The Electroweak Phase Transition: A Collider Target

M.J. Ramsey-Musolf

- T.D. Lee Institute & Shanghai Jiao Tong Univ.
- UMass-Amherst

My pronouns: he/him/his

CEPC Workshop Beijing, November 2019

Key Ideas for this Talk

- The "electroweak temperature" → a scale provided by nature that gives us a clear BSM target for colliders
- Simple arguments → BSM physics that gives rise to a first order EW phase transition (needed for EW baryogenesis) cannot be too heavy or too feeble
- Concrete BSM models → exemplify these arguments

Key Ideas for this Talk I

- The "electroweak temperature" → a scale provided by nature that gives us a clear BSM target for colliders
- Simple arguments → BSM physics that gives rise to a first order EW phase transition (needed for EW baryogenesis) cannot be too heavy or too feeble

Concrete BSM models → exemplify these arguments

Outline

- I. Context & Questions
- II. EWPT: A Collider Target
- III. Model Illustrations
- IV. Outlook

I. Context & Questions

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves → If a signal observed in LISA, could a cosmological phase transition be responsible ?

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves → If a signal observed in LISA, could a cosmological phase transition be responsible ?

Thermal History of Symmetry Breaking

QCD Phase Diagram → EW Theory Analog?

EWSB Transition: St'd Model

Increasing m_h

EWSB Transition: St'd Model

Increasing m_h

Lattice	Authors	$M_{\rm h}^C~({ m GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

EW Phase Diagram

SM EW: Cross over transition

EWSB Transition: St'd Model

Increasing m_h

Lattice	Authors	$M_{\rm h}^C$ (GeV)
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

EW Phase Diagram

How does this picture change in presence of new TeV scale physics ? What is the phase diagram ? SFOEWPT ?

S. Weinberg, PRD 9 (1974) 3357

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Electroweak Phase Transition

- Higgs discovery → What was the thermal history of EWSB ?
- Baryogenesis → Was the matter-antimatter asymmetry generated in conjunction with EWSB (EW baryogenesis) ?
- Gravitational waves → If a signal observed in LISA, could a cosmological phase transition be responsible ?

EW Phase Transition: Baryogen & GW

EW Phase Transition: Baryogen & GW

Main Themes for This Talk

- *T_{EW}* → *EW* phase transition is a target for the LHC & beyond
- Important complementarity exists between e⁺e⁻ and pp colliders

II. EWPT: A Collider Target

MJRM 1911.NNNNN

• Mass scale

• Precision

T_{EW} Sets a Scale for Colliders

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) h^2 + \lambda h^4 + \cdots$$

$$T_0^2 = (8\lambda + \text{ loops}) \left(4\lambda + \frac{3}{2}g^2 + \frac{1}{2}g'^2 + 2y_t^2 + \cdots \right)^{-1} v^2$$

*T*₀ ~ 140 GeV

T_{EW} Sets a Scale for Colliders

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) h^2 + \lambda h^4 + \cdots$$

$$T_0^2 = (8\lambda + \text{ loops}) \left(4\lambda + \frac{3}{2}g^2 + \frac{1}{2}g'^2 + 2y_t^2 + \cdots \right)^{-1} v^2$$

$$T_0 \sim 140 \; \text{GeV} \equiv T_{EW}$$

22

Generate finite-T barrier

Generate finite-T barrier

Introduce new scalar ϕ interaction with h via the Higgs Portal

$$\Delta V(h,T) \supset -\frac{T}{12\pi} M_{\phi}(h,T)^3$$

$$M_{\phi}(h,T)^{3} = \left[\frac{a_{2}}{6}T^{2} + b_{2} + \frac{a_{2}}{2}h^{2}\right]^{3/2}$$

$$\Delta V(h,T) \supset -\frac{T}{12\pi} M_{\phi}(h,T)^{3}$$
$$M_{\phi}(h,T)^{3} = \left[\frac{a_{2}}{2}T^{2} + b_{2} + \frac{a_{2}}{2}h^{2}\right]^{3/2}$$

6

Choose b_2 , a_2 to cancel at $T \sim T_{EW}$

2

T_{EW} : Direct $\phi^+\phi^-$ Production in e⁺e⁻

Mass Reach:

$E_{\rm CM}({\rm GeV})$	$M_{\phi} \ (\text{GeV})$	$\hat{\sigma}$ (fb)	$\int dt \mathcal{L} (ab^{-1})$	$N \times 10^{-3}$
340	100	142 fb	5	710
500	100	94 fb	2	188
	150	63 fb	2	126
1500	150	13 fb	2.5	32.5
	440	$7~{ m fb}$	2.5	17.5
3000	440	3 fb	5	15
	700	2 fb	5	10

Lots of events...but need energy

Higgs Boson Properties

- $\Gamma(h \rightarrow \gamma\gamma)$
- Higgs signal strengths
- Higgs self-coupling
- Exotic Decays

- Higgs signal strengths
- Higgs self-coupling
- Exotic Decays

$H \rightarrow \gamma \gamma$: Is There a Barrier ?

EWPT → Decrease in rate

$H \rightarrow \gamma \gamma$: Is There a Barrier ?

Thanks: M. Cepeda

- Thermal $\Gamma(h \rightarrow \gamma \gamma)$
- Higgs signal strengths
- Higgs self-coupling

 $H^2\phi$ Barrier ?

Exotic Decays

- Thermal $\Gamma(h \rightarrow \gamma \gamma)$
- Higgs signal strengths
- Higgs self-coupling
- Exotic Decays

• Thermal $\Gamma(h \rightarrow \gamma \gamma)$

- Prevent baryon number washout
- Observable GW

- Prevent baryon number washout
- Observable GW

- Prevent baryon number washout
- Observable GW

$$\frac{|a_1|}{2\lambda T_{\rm EW}} \gtrsim 1 \longrightarrow \begin{vmatrix} |\sin\theta| \ge 0.01 \\ |\Delta\lambda/\lambda| \ge 0.003 \end{vmatrix}$$

Prevent baryon number washout

- Thermal $\Gamma(h \rightarrow \gamma \gamma)$
- Higgs signal strengths
- Higgs self-coupling

Exotic Decays

 $H^2\phi$ and/or $H^2\phi^2$ Barrier ?

See this talk ahead & Z. Liu Tuesday

III. Models & Phenomenology

Model Illustrations

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Model Illustrations

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442; Li et al, 1906.05289

Singlets: Higgs Self Coupling

- Profumo, R-M, Wainwright, Winslow: 1407.5342;
- see also Noble & Perelstein 0711.3018

Thanks: M. Cepeda

Singlets: Associated Production

Huang, Long, Wang 2016

Singlets: Exotic Decays

$h_2 \rightarrow h_1 h_1 \rightarrow 4b$

J. Kozaczuk, MR-M, J. Shelton 1911.NNNNN

Singlets: Exotic Decays

$h_2 \rightarrow h_1 h_1 \rightarrow 4b$

J. Kozaczuk, MR-M, J. Shelton 1911.NNNNN

Model Illustrations

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Real Triplet

Real Triplet

Real Triplet: One-Step EWPT

FOEWPT

Real Triplet

Higher Dim Operators: $(\phi^+\phi)^6$

$$V(H) = \mu^2 |H|^2 + \lambda |H|^4 - c_6 |H|^6$$
$$\frac{1}{(0.89 \text{ TeV})^2} < -c_6 < \frac{1}{(0.55 \text{ TeV})^2}$$

 \rightarrow Implications for σ_{Zh}

- Cao, Huang, Xie, Zhang 2017
- Grojean, Servant, Wells 2004...
- Grinstein, Trott 2008...

IV. Outlook

- Determining the thermal history of EWSB is field theoretically interesting in its own right and of practical importance for baryogenesis and GW
- The scale T_{EW} → any new physics that modifies the SM crossover transition to a first order transition must live at M < 1 TeV
- Searches for new scalars and precision Higgs measurements at the LHC and prospective next generation colliders could conclusively determine the nature of the EWSB transition

Back Up Slides

- Thermal loops involving new bosons
- T=0 loops (CW Potential)
- Change tree-level vacuum structure

- Thermal loops involving new bosons
- T=0 loops (CW Potential)
- Change tree-level vacuum structure

Generate finite-T barrier

- Thermal loops involving new bosons
- T=0 loops (CW Potential)
- Change tree-level vacuum structure

- Tree-level barrier: $a_2 \phi^+ \phi H^+ H$
- Want $T_1 > T_2 \sim T_{EW}$

• Tree-level barrier: $a_2 \phi^+ \phi H^+ H$

Want
$$T_1 > T_2 \sim T_{EW}$$

$$V(\varphi, T) = \frac{1}{2} \left[-|b_2| + \frac{T^2}{6} \left(a_2 + \frac{3}{2} b_4 \right) \right] \varphi^2 + \frac{b_4}{4!} \varphi^4$$

79

T_{EW} : A Mass Scale for Colliders

- Foregoing arguments: good up to factor of $\sim 2 \rightarrow M_{\phi} < 800 \text{ GeV}$ (-ish)
- QCD production: LHC exclusion → φ is colorless
- Electroweak or Higgs portal (h- ϕ mixing...) production $\rightarrow \sigma_{PROD} \sim (1-500)$ fb (LHC) and (0.1-25) pb (100 TeV pp)
- Precision Higgs studies: see ahead

- Thermal $\Gamma(h \rightarrow \gamma \gamma)$
- Higgs signal strengths • Higgs self-coupling $Z_2 - breaking$ $\Delta V_0(H, \phi) = \frac{b_3}{3!}\phi^3 + \frac{a_1}{2}H^{\dagger}\phi H + h.c.$ $H^2\phi \text{ Barrier ?}$ $H^-\phi \text{ Mixing}$

• Thermal $\Gamma(h \rightarrow \gamma \gamma)$

EW Multiplets: EWPT

• Tree-level barrier

Illustrate with real triplet: $\Sigma \sim (1,3,0)$

T>T.

T=T,

 $< \Sigma^{0} >$

$H^2\phi^2$ Barrier ?

EW Multiplets: One-Step EWPT

$$H^2\phi^2$$
 Barrier ?

 $<\Sigma^0>$

T=T,

EW Multiplets: Two-Step EWPT

- One-step: Sym phase → Higgs phase
- Two-step: successive EW broken
 phases

EW Multiplets: Two-Step EWPT

 $\leq \phi^0 >$

Η

 ϕ dark matter

EW Multiplets: Two-Step EWPT

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

T_{EW} : Direct $\phi^+\phi^-$ Production at LC

$$\hat{\sigma}(f_1 \bar{f}_2 \to V^* \to \phi_1 \phi_2) = g_{\phi}^2 \times \mathcal{G}_V \times F_V(\hat{s}, M_{\phi})$$
$$\mathcal{G}_V = \left(\frac{g^4}{4\pi}\right) \left(\frac{g_V^2 + g_A^2}{12}\right) v^{-2}$$

Max sensitivity: $E_{CM} \sim 3.4 \times M_{\phi}$

89

EW Phase Transition: Singlet Scalars

SFOEWPT Benchmarks: Resonant di-Higgs

Kotwal, No, R-M, Winslow 1605.06123

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

See also: Huang et al, 1701.04442

Heavy Real Singlet: EWPT & GW

- One-step
- Non-perturbative

Heavy Real Singlet: EWPT & GW

- One-step
- Non-perturbative