International Workshop on the Circular Electron-Positron Collider Nov. 18-20, Beijing, 2019

A novel SOI-PDD design for the CEPC vertex detector

Zhigang Wu, <u>Yunpeng Lu</u>, Yang Zhou, Jing Dong, Qun Ouyang Nov. 19, 2019

Outline

- Pixel sensors for the vertex detector
 - Overview of R&D activities
- SOI-PDD structure
- CPV3 chip design
 - Diode optimization
 - Circuit description
 - Noise analysis
 - Test structures
- Perspectives on SOI-3D
- Summary

Detector Requirements

Efficient tagging of heavy quarks (b/c) and τ leptons

→ impact parameter resolution

$$\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV)\sin^{3/2}\theta} (\mu m)$$

- Detector system requirements:
 - σ_{SP} near the IP: <3 μ m \longrightarrow ~16 μ m pixel pitch
 - material budget: ≤ 0.15%X 0/layer
 - first layer located at a radius: ~1.6 cm
 - pixel occupancy: <1 % → ~ µs level readout
- Radiation tolerance
- Time stamp: needed for short bunch spacing 25ns in Z⁰ mode

Target:

fine pitch, low power, precise timing, fast pixel sensor + light structure

power consumption $< 50 \text{mW/cm}^2$,

Beam-Induced Backgrounds (CDR)

Detector occupancy <1%</p>

 assuming 10 µs readout interval, 16 um pixel pitch with a multiplicity of 9 per hit

Radiation level at the first vertex layer

	H (240)	W (160)	Z (91)
Hit Density [hits/cm ² ·BX]	2.4	2.3	0.25
TID [MRad/year]	0.93	2.9	3.4
NIEL [10^{12} 1 MeV n_{eq} /cm ² ·year]	2.1	5.5	6.2

Occupancy at the first vertex layer

	H(240)	W(160)	Z(91)
Hit density (hits $\cdot \text{ cm}^{-2} \cdot \text{BX}^{-1}$)	2.4	2.3	0.25
Bunching spacing (μs)	0.68	0.21	0.025
Occupancy (%)	0.08	0.25	0.23

R&D activities on pixel sensors

- CMOS pixel sensor (CPS) funded by MOST and IHEP
 - TowerJazz CiS 0.18 µm process
- SOI pixel sensor funded by NSFC and IHEP
 - LAPIS 0.2 µm process

R&D activities on pixel sensors

- CMOS pixel sensor (CPS) funded by MOST and IHEP
 - TowerJazz CiS 0.18 µm process
- SOI pixel sensor funded by NSFC and IHEP
 - LAPIS 0.2 µm process

SOI pixel detector

- Sandwich structure
 - Upper: pixel circuit (device layer + 5 metal layers)
 - Middle: SiO₂ insulator with metallized through holes
 - Lower: diode array
- 0.2um FD-SOI CMOS process
 - High resistive substrate
 - Low-power optimized
 - No latch-up and very low Single Event Effect

Evolution of SOI detector process

- Pinned Depleted Diode (PDD)
 - CPV3 chip design
- **Double-SOI**
 - CPV1/CPV2 chip design
- Nested-wells
- **Buried P-Well (BPW)**

- CPV2 performance
 - Thinned down to 75um thick
 - Temporal noise 6e-
 - Residual of laser positon 2.3um (σ)

Ref: 1. Y. Lu, FEE2018, May 2018 2. Z. Wu, et al, NIMA924 (2019) 409-416

A conceptual view of PDD

Proposed by Shoji Kawahito (Shizuoka U.)

- Pinned Si surface layer \rightarrow reduction of surface leakage by 2 orders
- Depleted charge collection electrode → reduction of diode capacitance
- Lateral electric field \rightarrow improved charge collection efficiency

Ref: Sensors 2018, 18, 27; doi:10.3390/s18010027

CEPC workshop, Nov, 2019

Stackup of pixel layers in CPV3

- HR P-type substrate
 - 25 KΩ·cm
 - Reverse biased > -10V
- <u>NS</u> and <u>BNW1/2/3</u>
 - Charge collection
 - Positive V_{sense}
- <u>PS</u> and <u>BPW1/2</u>
 - V_{BPW} Pinned to 0 or -1V

Diode optimization

- Pixel pitch 16 um * 20 um
 - Minimum size to accommodate the pixel circuit
- Capacitance optimization
 - NS to BPW1 dominates
 - Reverse bias > 6V is required
 - 2 um of the spacing between BNW1 and BPW1 is chosen

Bias of sensing node

Sensing node AC-coupled to the amplifier for low capacitance

- Voltage on the sensing node is set by V_{bias}
- MIM capacitor to allow V_{bias} up to +10V
- Leakage current around 100 fA/pixel thanks to the PDD structure
- 2% loss of signal over 100 us integration time

Amplifier

- Common Source (CS) amplifier, 1st stage
 - DC gain ~13
 - 1 uA consumed only when readout (rolling shutter mode, < 1% duty cycle)
 - Forced to initial state after readout by a pair of complementary reset transistors
 - C_{inj} = 0.27fF for electrical pulse test

Discriminator

- Cascode amplifier, 2nd stage
 - Correlated Double Sampling (CDS) to reduce KTC noise
 - Cascode input with its active load shared on the column line
 - 4 uA consumed only when readout (rolling shutter mode, < 1% duty cycle)
 - Intrinsic threshold 525mV, adjustable by V_{clamp}

Noise analysis

Temporal Noise (TN)

- Shot noise is negligible due to low leakage current
- Thermal noise is the dominant component
- 6 e⁻ achieved on CPV2 design
- Fixed Pattern Noise (FPN)
 - Excessive FPN has been an issue in CPV2 design
 - W/L = 0.63/0.2 um for the input Tr. of 1st stage
 - W/L = 2.4/0.2 um for the input Tr. of 2nd stage
 - Process variation added to the HSPICE model and qualified with CPV2 results.

$$\sigma(W) \propto \frac{1}{\sqrt{L}}, \sigma(L) \propto \frac{1}{\sqrt{W}}, \sigma(Vth) \propto \frac{1}{\sqrt{LW}}, \sigma(Tox) \propto \frac{1}{\sqrt{LW}}$$

Statistical simulation, FPN = 12 e⁻

Test structure 1: cascode 1st stage

- CS-stage of the amplifier replaced by a cascode stage
 - To mitigate the miller effect and to improve the CVF
 - Carefully tuned to have a DC gain < 30 (for a proper dynamic range)
- Optimized the size of P0 Transistor (as the active load)
 - W/L = 2/0.3 um for lower FPN, DC gain = 25
 - W/L = 0.63/0.3 um for lower TN, DC gain = 30

CEPC workshop, Nov, 2019

Test structure 2: analog output

- Discriminator replaced with a source follower for analog output
 - To make the output of CS-stage accessible during test
 - A powerful tool to investigate possible malfunction of CS-stage

Test structure 3: 3-Transistor readout

- A 3-Transistor source follower used to read out the PDD sensing node
 - Large dynamic range to characterize the PDD sensor
 - Simple and straightforward

Status of CPV3

Submitted in Feb. 2019

- First trial on the PDD structure
- Dedicated bias scheme to minimize capacitance
- Optimized for low FPN 12e⁻
- Pixel matrix divided as 45 regions, to verify design options
- Mask area: 6mm×6mm
- Testing system is ready
 - Sub-board, FPGA board, DAQ
 - To be wire-bonded and testing...

图 二十一: 全像素阵列分布

Perspectives on SOI-3D

- A 5-year proposal granted by the NSFC this year
- SOI wafers greatly simplify 3D integration
 - The lower tier can be either SOI or CMOS pixel sensor
- SOI-3D has been demonstrated by the SOFIST4 3D chip for ILC
 - 10k connections in single chip yields 99.98%

Ref: M. Yamada, IEEE 3DIC, Oct. 8th, Sendai, Japan, 2019

• images of the β -ray tracks of ⁹⁰Sr

Lower Tier

Summary

- Requirements of CEPC vertex detector is unprecedented
 - CPV1/2/3 are targeting on the spatial resolution, low power consumption and modest readout speed
- CPV3 has been adapted to the PDD structure and optimized for low FPN
 - A variety of design options to be verified on this design
- SOI-3D is bringing about a new dimension of design freedom
 - Additional circuit layer with the material slightly increased by 10 um
 - Compatible with both SOI and CMOS pixel sensors

Acknowledgements

- This work is supported by the National Nature Science Foundation of China, Grant 11575220.
- And the CAS Center for Excellence in Particle Physics (CCEPP)

Backup slides

Device simulation

How to achieve s.p. resolution < 3um?

- Device configuration
 - HR P substrate, N electrode
 - Pixel pitch 16um
 - Sensor thickness 50um
- Transport of charge carriers
 - Analyzed by TCAD tools

002. test/try2/2_0003_pix1_des.tdr 0-0

004. Y-Slice 2 [002. test/try2/2_0003_pix1_des.tdr 0-0]

50

e

2

.0E+15

9.0E+12 9.1E+12

3.0E+15

Device simulation

- Low noise front-end is critical to make use of the charge sharing effect
 - ENC ~ 20e⁻
 - Threshold ~ 200e⁻
- Limitation of 1D approach
 - Corner of square pixel

Residual distribution with threshold at 200e-

Single point resolution vs threshold