CEPC Project Overview

XinChou Lou Institute of High Energy Physics (Beijing)

The 2019 Workshop on High Energy Circular Electron-Positron Collider

Outline

Introduction

- Reminders
- Goals and plan
- Roadmap and schedule

CEPC project development

- Conceptual design reports (CDR)
- Design-phys. enhancement, R&D, infrastructure
- International collaboration
- Site investigation & domestic relations
- Cultivation of CEPC

Reminders

Reminder about the CEPC-SppC

BEPCII will likely complete its mission ~ late 2020s;**CEPC – possible** accelerator based particle physics program in China after BII

Reminder about the CEPC-SppC

Kick-off on Sept. 13, 2013 - inspired by the discovery of the Higgs boson at the LHC

CEPC study group formed in Beijing

PreCDR, March 2015 – initial investigations; no-show stoppers, identified issues & R&D

Funding, R&D, international collaboration, ... – continuing effort since 2013

CDR, August-October 2018 – scientific goals well justified & aligned with intl priorities; endorsement for moving towards TDR, and ...

CEPC accelerator TDR, DRD, luminosity enhancement, international collaboration, ...

Goals and Plan

- Design + R&D (DR&D), validation, and industrial preparation
- Global collaboration and strategy
- Best positioning CEPC for national government's positive decision
- Realization of the CEPC project, the experimental program and pursue the science

CEPC Roadmap and Schedule (ideal)

Conceptual design

CEPC CDR

Lumi.	Higgs	W	Z	Z(2T)
×10 ³⁴	2.93	11.5	16.6	32.1

Luminosities exceeded those in the preCDR

- double ring baseline design (30MW/beam)
- switchable between H and Z/W w/o hardware change (magnet switch)
- use half SRF for Z and W
- can be optimized for Z with 2T detector

Layout of 650 MHz SRF system for Collider Ring

Progress and updates - Detector-Physics

Baseline detector: pixel vertex detector, silicon inner tracker, a TPC, Si external tracker, ECAL, HCAL, 3 T B-field, embedded muon detector

Alternative detector

Preshower

DCH Rout = 200 cm

DCHRin = 30 cm

Cal Rin = 250 cm

Cal Rout = 450 cm

Baseline detector ILD-like (3 Tesla)

11

CEPC CDR Released on November 14, 2018

CEPC team handed the CDR to Institutional Board Chair and IHEP Director

Circular Electron-Positron Collider

CC - Amsterdam 2018 uminosity \times 10³⁴ cm⁻² sec⁻ Luminosity vs. CM energy CepC - Amsterdam 2018 CepC - 2 T at Z pole LC - HK Jan 2017 Lumi Upgrade H20 2015 **Circular:** LC - New 240 GeV - HK 2018 CLIC 99% - Rebaseline 2016 ZH offers higher lumi. @ LE CLIC total - Rebaseline 2016 New 250 GeV (Lumi + E Up) 2018 ILC - New 250 GeV (Lumi or E Up) 2018 unprecedented Z,W,+H program tt mature technology **HE synchrotron light source (?)** very long term: pp upgrade path FCC SR power/beam < 50 MWCepC SR power/beam < 30 MW ILC - New 250 GeV (base) 2018 Linear: 10-102 10^{3} S GeV very impressive Higgs precision G. Taylor et al best Lumi. at higher energies, or only option for VHE

circular & linear colliders are ideally complementary to each other

(ILC lumi upgrade even better at the Higgs)

Design&physics enhancement, R&D, and infrastructure

Progress and updates – CEPC Day

CEPC Day – post CDR monthly team meeting on progress, problems and issues, plus CEPC **Steering Committee Meeting**, held since February, this year.

¹/₄-1/3 of the overall CEPC will be covered each CEPC Day, complete coverage 3-4 months Set aside time for detailed discussions

example	morning—afternoon sessions are open to all CEPC stakeholders
September 27, 20	19
9:00 - 12:00	Detector, Software, Physics
12:00 - 13:45	Steering Committee Meeting
14:00 17:30	Accelerators

Vidyo link:

http://vidyo.ihep.ac.cn/flex.html?roomdirect.html&key=P1kF5j5SQDoTFh2veKCFcXJGPGQ Room Extension: 0020188011001

Indico Page: https://indico.ihep.ac.cn/event/10617/

Progress and updates – Simulation Study

- Physics: white paper preparations towards the TDR
- Topical WS on CEPC Physics and detector at PKU
 - Covers the topic on QCD, Flavor, EW, and Higgs
 - Multiple benchmarks proposed and corresponding roadmap discussed
 - Related Performance studies (i.e., Pid, Lambda/Ks, Tau reconstruction) are presented
 - Interpretation & Global Fit
 - EW: provide the essential input for the EUSPP and ECFA Higgs Working groups
- Recent Performance Studies

Manqi RUAN

CEPC: old vs. new (Higgs basis)

new:

precision reach of the full EFT fit (Higgs basis) HL-LHC S1 / S2 CEPC 240GeV (5.6 ab⁻¹), without/with HL-LHC S2 10 precision 10-2 10⁻³ 10 \overline{c}_{qq}^{eff} cγγ δ**c**7 $\overline{c}_{Z\gamma}$ δy_t δy_c δy_b δy_τ δyμ λ_Z c_{ZZ} c_{Z□}

Full fit: only the Higgs parameters are shown.

HL-LHC: ATLAS and CMS are combined. (The correlation between ATLAS/CMS are not provided by the WG.)

Jiayin Gu (顾嘉荫)

Towards v2.0 of the CEPC EFT fit

Development – expert committees

- Accelerator review committee recommended by the IAC, established and will meet in this week at this workshop (November, 2019)
- Detector R&D committee recommended by the IAC, a large committee (~16 members) has been established; first meeting at this workshop

We expect to benefit greatly from these committees

CEPC design enhancement

Dynamic aperture optimization

- Dynamic aperture optimized with the new lattice aiming at luminosity of $5 \times 10^{34}/cm^2/s$.
 - Effects of nonlinearity in lattice, synchrotron radiation, beam-beam interaction are included.
 - Multi-Object Deferential Evolution (MODE) algorithm used to make global optimization.
 - DA goal $8\sigma_x \times 15\sigma_v \times 1.7\%$
- More efforts will be made to enlarge the momentum acceptance.
- The goal will be adjusted with further beam lifetime study which is under going.

Jie GAO

CEPC design enhancement

Experimental Verification Planfor CEPC Plasma Injector Scheme

Jie GAO

CEPC R&D

CEPC SCRF R&D in Progress

High power coupler

НОМ

Absorber

CEPC 650 MHz Cryomodule

CEPC R&D

1st CEPC 650MHz Klystron Prototype Manufacture

(1) Components

Modulator anode

Pumping out pipe

De-gassing facility

Output window

Gun support

Jie GAO

Focusing electrode

Cathode

CEPC R&D

650 MHz 1-Cell Cavity (Large Grain)

- 650 MHz 1-cell cavity (large grain) is favorable for HL-Z, which have higher Q and gradient than fine grain.
- Target of Vertical test: **5E10 @ 42MV/m at 2.0 K**.
- Four cavities are under fabrication now, which will be tested in the middle 2019.

Large grain Nb sheets made by OTIC

Jie GAO

For the long run – SppC and FCC(pp)

Fabrication and test of the 1st IBS solenoid coil at 24T

The 1st solenoid coil with IBS tape fabricated and tested with up to 24T background field. Performance is more than expected.

IOP Publishing Supercond. Sci. Technol. 32 (2019) 04LT01 (5pp) Superconductor Science and Technology

Letter

First performance test of a 30mm iron-based superconductor single pancake coil under a 24T background field

Dongliang Wang^{1,2,5}, Zhan Zhang^{3,5}, Xianping Zhang^{1,2}, Donghui Jiang⁴, Chiheng Dong¹, He Huang^{1,2}, Wenge Chen⁴, Qingjin Xu^{3,6} and Yanwei Ma^{1,2,6}

¹ Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

² University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China ³ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China

⁴ High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

Viewpoint by NHMFL

'From a practical point of view, **IBS are ideal** candidates for applications. Indeed, some of them have quite a high critical current density, even in strong magnetic fields, and a low superconducting anisotropy.

Moreover, the cost of IBS wire can be four to five times lower than that of Nb₃Sn.....

IOP Publishing

Superconductor Science and Technology https://doi.org/10.1088/1361-6668/ab1fc9

Supercond. Sci. Technol. 32 (2019) 070501 (3pp)

CrossMark

Viewpoint

Constructing high field magnets is a real tour de force

Jan Jaroszynski () National High Magnetic Field, Laboratory, Tallahassee, FL, 32310, United States of America E-mail: jaroszy@magnet.fsu.edu This is a viewpoint on the letter by Dongliang Wang *et al* (2019 *Supercond. Sci. Technol.* **32** 04LT01).

Following the discovery of superconductivity in 1911, Heike Kamerlingh Onnes foresaw the generation of strong magnetic fields as its possible application. He designed a 10 T electromagnet made of lead-tin wire, citing only the difficulty

CEPC Infrastructure

IHEP New SC Lab under Construction (Status August 2019)

Jie GAO

See talks by Jie's, Joao's and Qingjin for details

International collaboration

R&D of HL-LHC CCT Magnets

China provides 12+1 units CCT corrector magnets for HL-LHC before 2022 2*2.6T dipole field in the two apertures. 2.2m prototype being fabricated.

Agreement For HL-LHC CCT Magnets Signned in Sep 2018

Layout of the HL-LHC Magnets and Contributors

Progress and updates – Intl Collaboration

- Strengthen cooperation with CERN
- Joined CALICE collab., ILD TPC collab., RD collab.s
- First international workshop on CEPC in Europe Rome May, 2018
- Second CEPC workshop (EU) in Oxford, UK, April 15-17, 2019
- Third planned for Marseille, France, May 4-6, 2020 <u>https://indico.in2p3.fr/event/20053/</u>
- First US workshop at UChicago, September 16-18, 2019
- Second US workshop planned for April 22-23, 2020 (TBC) Catholic University in Washington DC, USA
- Fifth CEPC IAC meeting (Nov. 21-22, 2019) to focus on international collaboration and other aspects

Progress and updates – Intl Collaboration

Preparation for European Strategy for Particle Physics update

Inputs (CEPC accelerator, physics-detector) have been submitted

CEPC accelerator: ArXiv: 1901.03169, CEPC Physics/Detector: 1901.02170

Development – CEPC Organization

CEPC Input to the European Particle Physics Strategy Update 2018-2020 Addendum: The Planning of CEPC

"The current priority of the CEPC project is to secure its position as one of the seed projects of this program. The official approval of the CEPC project, at the earliest, could happen in 2022. The accelerator construction could start soon after the approval. At the same time, a call for detector Letters of Intent is planned. Two detectors will be selected and the International collaborations will be formed accordingly. The collaborations should deliver their Detector Technical Design Reports within two years after the starting of the construction of the accelerator"

"To achieve this goal, two International Committees will be established. The first is an **Accelerator Review Committee** that advises on all matters related to the accelerator design and R&D including the Machine-Detector Interface and upgrade capabilities. The second is a **Detector R&D Committee** that reviews and endorses the Detector R&D proposals from the international community, such that the international participants could apply for funds from their funding agencies and make effective and sustained contributions."

Development – CEPC Organization

CEPC Input to the European Particle Physics Strategy Update 2018-2020 Addendum: The Planning of CEPC

"International collaboration is vital for the CEPC project. Active collaborations have been established between the domestic CEPC study groups and multiple international research institutions. Through these collaborations, many key challenges of the CEPC detector design and physics studies have been identified and being addressed through dedicated R&D programs. "

"The organization will evolve with time. In the construction and operational phase, the organization will naturally evolve to include the council representing the participating countries and the host lab management who provide supervision to this project."

"Though the CEPC project is initiated by and to be hosted in China, it is envisioned to be an international project. The organization and the management of the project will reflect the international participation of its stakeholders. The successful international participation played a critical role in the delivery of the CEPC conceptual design, and it will certainly become more important in the future."

Development – CEPC Organization

CEPC Input to the European Particle Physics Strategy Update 2018-2020 Addendum: The Planning of CEPC

The organization structure is for the period "2019 – construction", to promote and accommodate international participation, reflects 2018 CEPC workshop National Funding agencies consensus and IAC commendations National representatives Institution committee **Advisory Committee** Coordination committee Accelerator Review **Detector R&D Committee Project director** Committee Accelerator theory detector

In addition to ESPPU, CEPC team is looking forward to the US P5 update

Summary

> Asia is a major contributor to the world of HEP

HEP programs in Asia cover a wide range of scientific frontiers Projects under development will bring exciting physics opportunities Large e⁺e⁻ colliders (ILC, CEPC) – options for the world

Xinchou Lou at DPF 2019

- Many of the Asian HEP physicists are trained in the West and are global minded – good for international collaboration
- Continued effort, world-wide coordination, improved design and technological advance are crucial for realizing future high energy frontier e⁺e⁻ collider(s)
- Asia by itself does not produce a single HEP strategy. It is very important that European ESPP and US P5 include Asia

Site investigation & domestic relations

CEPC site investigation and facility study

CEPC is conducting country wide site visits and study. Local government agencies are very receptive and supportive to CEPC. CDR study is based on site 1 (Qing Huang Dao).

CEPC Interaction Region

CEPC site investigation and facility study

Changsha (Hunan Provice)

38

CEPC site investigation and facility study

Changsha (Hunan Provice)

39

CEPC Industrial Promotion Consortium (CIPC)

was established in 2017 to prepare for industrial production of CEPC components

The first and the last segments - sextupole combined

Cultivation of CEPC

Progress and updates – Path to realization

Chinese Government: "actively initiating major-international science project..." 国发〔2018〕5号〔2018.3.14〕<u>http://www.gov.cn/zhengce/content/2018-03/28/content_5278056.htm</u>

- focuses on "frontier science, large-fundamental science, global focus, international collaboration, ..."
- by year 2020, 3-5 projects will be chosen to go into "preparatory stage", among which 1-2 projects will be selected. More projects will be selected in later years.
- The task of selecting the projects, and develop them further falls on the Ministry of Science and Technology (MOST)
- MOST committees formed, are writing the guidelines
- This is a likely path to realize CEPC. We are paying close attention to this opportunity
- > CEPC team is in regular contact with MOST expert committee
- Selection criteria seem to be in place, but selection process is not clear, expect to be rather volatile
- > CEPC is focusing on working, & making progress according to the roadmap-schedule

Progress and updates – Path to realization

1st Wave

积极牵头组织国际大科学计划和大科 学工程项目培育建议书

Suggested Large International Science & Engineering Project for Cultivation

 项目名称:
 环形正负电子对撞机培育
 Cultivation of CEPC

 所属领域:
 物质科学

 申报单位:
 中国科学院高能物理研究所
 Host: IHEP

 项目负责人:
 王贻芳
 PI: YiFang Wang

Cultivation proposal submitted to on November 13, 2019

Progress and updates – Funding Model

The cost of the CEPC accelerator and two detectors have been estimated to be 36 billion CNY (~ 5 billion US Dollars), under the assumption that the local government will provide the land, and the necessary infrastructure for the CEPC facility

Option 1:

32B CNY from Chinese central government + 4B CNY International (1US\$ = 7 CNY)

Option 2:

12B CNY from Chinese central government10B CNY from MOST International science project10B CNY from local government4B CNY International

Under discussion: funding breakdown across various 5-yeatr periods

Progress and updates – Path to realization

2nd Wave

国家重点研发计划 项目预申报书

Focused R&D - preproposal

西日夕场	环形正色由子对墙机 Cultivation of CEPC	
坝日名称:	小形正页电1 对重机 Cultivation of CLPC	A areas to cultivate
所属专项:	战略性国际科技创新合作重点专项	1. Science goals
指南方向:	物质科学领域	2. R&D + preparation
项目管理专业机构:	中国科学技术交流中心	3. International consultation
推荐单位:	中国科学院 Recommendated by CAS	dissemination & planning
	中国科学院高能物理研	4. Organization & operation
申报单位:	究所 Host: IHEP	model development
项目负责人:	王贻芳 PI: Yifang Wang	

Pre-proposal submitted to MOST on July 12, 2019

Summary

- The CEPC accelerator enhancement in design and TDR process is on going;
- At the IAC's recommendation, strong committees have been formed to guide the detector R&D and collaboration, and for the accelerator TDR;
- The CEPC Study Group has submitted to MOST the cultivation suggestion, and is working with CAS to move the project forward
- Funding model and schedule are under further study to fit CEPC to the government's planning and timescale

