

Institute of High Energy Physics Chinese Academy of Sciences

Higgs measurement in $H \rightarrow \gamma \gamma$ channel in CEPC

<u>Fangyi Guo</u>, Yaquan Fang, Xinchou Lou

Institute of High Energy Physics, CAS

The 2019 International Workshop on High Energy Circular Electron Positron Collider

Nov. 18-20 2019, IHEP, Beijing

Content

Introduction and Previous review

MC samples and simulation

 $\sigma \times Br(H \rightarrow \gamma \gamma)$ measurement in 3 sub-channels

Investigation of ECAL resolution influence

First look of extrapolation to 360GeV

Conclusion

Introduction

Higgs physics in CEPC

- Higgs production: $ee \rightarrow ZH$ process @ 240GeV e^+e^- collider.
- $H \rightarrow \gamma \gamma$ could be studied in 3 sub-channels, depends on Z decay(leptonic, hadronic and invisible).
- A good channel for Higgs precise measurement in CEPC
- Also a benchmark for EM calorimeter design.

Previous review

$H \rightarrow \gamma \gamma$ physics analysis in <u>CEPC CDR(2018)</u>:

- Design point at CEPC_v4, $\sqrt{s} = 240 GeV$, $\mathcal{L} = 5.6 ab^{-1}$
- Whizard 1.95 + MoccaC generator, dedicated fast simulation+smearing function based on parametrized detector response.
- Considered $H \rightarrow \gamma \gamma$ signal and 2 fermion dominant background
- Result: $\delta(Br(H \to \gamma \gamma) \times \sigma(ZH))=6.84\%$ in 3 combined channels.

CEPC Physics Workshop in PKU, July 2019

- Applied MVA method in $ZH \rightarrow qq\gamma\gamma$ channel, and gained ~30% improvement. Combined precision with MVA: 5.39%
- Expect to have similar improvement in all 3 sub-channels

MC samples and simulation

MC samples: Whizard 1.95 + MoccaC, 3 sub-channels

• Signal: $ee \rightarrow ZH \rightarrow qq\gamma\gamma/\mu\mu\gamma\gamma/\nu\nu\gamma\gamma$, 10k events for each channel.

• Background: 2 fermion process $ee \rightarrow ff$ +radiation photons

Simulation:

• Background:

Fast simulation: smear the objects with the resolution and efficiency with parametrized detector response to obtain a continuum spectrum.

• Signal:

Full CEPC detector V4 simulation. Photon reconstruction & Isolation, jet clustering, etc.

define: γ_1/f_1 as photon/jet with lower energy, and γ_2/f_2 as higher energy one.

MC samples and simulation

2000 2000 18000 $qq\gamma\gamma$ channel sample: **CEPC 2019** 5.6 ab⁻¹, 240 GeV Fast sim. Z→qq, H→γγ Mass width $qq\gamma\gamma$ eff 16000 Full sim. 14000 Fast sim 99.9% 1.98GeV 12000 Full sim 85.6% 2.81GeV 10000 8000 $\mu\mu\gamma\gamma$ channel: 6000 Lepton PID efficiency:87% 4000 $\implies \mu\mu\gamma\gamma$ final state eff=70% 2000 (also ~100% in fast sim.) 120 125 130 135

> $m_{\gamma\gamma}$ shape for fast and full simulation in $ZH \rightarrow qq\gamma\gamma$ channel. Fit shape: Gaussian for fast sim, Double-side Crystal Ball(DSCB) for full sim.

140

m_{vv}[GeV]

MVA based $\delta(\sigma \times Br)$ measurement

Pre-selection

```
E_{\nu 1} > 25 GeV
35GeV < E_{\gamma 2} < 96GeV
cos\theta_{\nu\nu} > -0.95,
cosθii>-0.95
pT_{\gamma 1} > 20GeV,
pT_{\gamma 1} > 30GeV
 110 GeV < m_{\gamma\gamma} < 140 GeV
E_{\nu\nu} > 120 GeV
 min |cos\theta_{\nu i}| < 0.9
```

```
E_{\nu} > 35 GeV
|\cos\theta_{\gamma}| < 0.9
  10GeV < pT_{\gamma 1} < 70GeV
  30GeV < pT_{\gamma 1} < 100GeV
 110 GeV < m_{\gamma\gamma} < 140 GeV
 min|cos\theta_{\nu i}| < 0.9
 84GeV<M_{\nu\nu}^{recoil}<103GeV
 125GeV<E_{\gamma\gamma}<143GeV
```

 $E_{\gamma} > 30 GeV$ $|\cos\theta_{\gamma}| < 0.8$ $pT_{\gamma} > 20GeV$ $110 GeV < m_{\gamma\gamma} < 140 GeV$ 120GeV< $E_{\gamma\gamma}$ <150GeV

 $qq\gamma\gamma$ channel. Final eff: 61% for signal, 0.02% for background

 $\nu\nu\gamma\gamma$ channel. Final eff: 46% for signal, Final eff: 57% for signal, 0.002% for background 0.01% for background

 $\mu\mu\gamma\gamma$ channel.

MVA based $\delta(\sigma \times Br)$ measurement

MVA analysis

- Base variables: 4-vector of 4 particles in final state.
- Considered variables for MVA: constructed with 4-vector

P, pT, E, $cos\theta$, recoil mass, missing mass(for ν channel) for photons, fermions, systems.

 ΔP , ΔE , $\Delta \Phi$, $\Delta cos\theta$, ΔR for 2 objects or systems.

Correlation requirement for variables:

 $|Corr_{v-m_{vv}}| < 30\%, |Corr_{v_1-v_2}| < 40\%$

ML training method: BDTG
 Separately in 3 channels.

MVA based $\delta(\sigma \times Br)$ measurement

Signal strength extraction $\mu = N_{H \to \nu\nu}^{obs} / N_{H \to \nu\nu}^{SM}$

• Individual 2-D fit in $m_{\gamma\gamma}$ and BDT response.

Fit function for $m_{\gamma\gamma}$: DSCB for signal, 2nd polynomial exponential for Bkg. Model for BDT: binned PDF for signal and Bkg.

 $PDF_{2D} = PDF_{m_{yy}} \times PDF_{BDT}$ ($|Corr_{m_{yy}-BDT}| = 3\%(15\%)$ for signal(Bkg))

BDTout distribution in qqyy channel

MVA based $\delta(\sigma \times Br)$ measurement

Results

Channel	Full sim + MVA (New)	Fast sim + noMVA (CDR)	Change
qqyy	6.31%	9.84%	36% improved
μμγγ	39%	23.7%	64% decreased
ννγγ	18%	10.5%	71% decreased
combined	5.70%	6.84%	16% improved

FCC-ee case:

- 3% @240GeV, $10ab^{-1}$, based on CMS ECal resolution, <u>TLEP physics</u>, 2013
- 9% @240GeV, 5*ab*⁻¹, <u>FCC-ee CDR, 2018</u>

ECal resolution influence

Smear photon energy to different resolution $\frac{\delta E}{E} = A \bigoplus \frac{B}{\sqrt{E}}$, and fit $m_{\gamma\gamma}$ distribution to extract $\delta \mu(H \to \gamma\gamma)$

 $\frac{\delta\mu}{\mu} = p_0 \oplus (p_1 \times B)$, p_0 represent constant term contribution in $\delta\mu$, p_1 represent statistics term.

Critical point(A-B balance) definition: $\delta\mu(B_c) = \sqrt{2}\delta\mu(B=0)$, $\langle p_0 = p_1B \rangle$

Extrapolation for 360GeV

If one day we want to see 360GeV @CEPC...

 $\mu\mu\gamma\gamma$ Whizard MC @ $\sqrt{s} = 360GeV + 240GeV$ simulation

Difference:

- *m*_{γγ} width:
 2.84GeV@240GeV
 2.34GeV@360GeV
 - → Better photon resolution
- Efficiency: 80%@360GeV, 85%@240GeV
- Mass peak: 126.03GeV@360GeV.
 - ➡ Re-calibration for detector

Conclusion

Full simulation + MVA analysis for $H \rightarrow \gamma \gamma$ channel

- Improvement from MVA + decrease from full simulation. combined precision 5.7% in 3 sub-channels.
- Photon correction like photon conversion was not included in full simulation, lepton PID efficiency need further study.

ECal resolution and precision

- 14% statistics term ~ 1% constant term.
- CEPC baseline detector still have improvement space.

Thank you