Extended Higgs Sector at Future Higgs Factories

Shufang Su • U. of Arizona

CEPC Workshop
IHEP
November 19, 2019

J. Gu, H. Li, Z. Liu, W. Su, 1709.06103 N. Chen, T. Han, SS, W. Su, Y. Wu, 1808.02037 N. Chen, S. Li, T. Han, SS, W. Su, Y. Wu, work in progress

Outline

- Higgs precision measurements
- Global fit framework
- Extended Higgs Sector: 2HDM
 - Tree vs Loop
 - Degenerate vs. Non-degenerate
 - Higgs vs. Z-pole
- Complementarity with direct search @ 100 pp
- Conclusion

LHC: 14 TeV, 300 fb⁻¹, 3000 fb⁻¹

S. Su 1902.00134

CEPC / FCC / ILC

collider	CEPC	FCC-ee	ILC									
\sqrt{s}	$240\mathrm{GeV}$	$240\mathrm{GeV}$	$250\mathrm{GeV}$	350	GeV	$500\mathrm{GeV}$						
$\int \mathcal{L}dt$	5 ab^{-1}	5 ab^{-1}	2 ab^{-1}	200	fb^{-1}		4 ab^{-1}					
production	Zh	Zh	Zh	Zh $ u \bar{ u} h$		Zh	$ u \bar{\nu} h$	$t ar{t} h$				
$\Delta\sigma/\sigma$	0.51%	0.57%	0.71%	2.1% -		2.1% -		2.1% -		1.06	-	-
decay			$\Delta(\sigma)$	$BR)/(\sigma$	BR							
$h o b ar{b}$	0.28%	0.28%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%				
$h \to c\bar{c}$	2.2%	1.7%	2.9%	12.7%	16.7%	4.5%	2.2%	-				
$h \rightarrow gg$	1.6%	1.98%	2.5%	9.4%	9.4% 11.0%		1.5%	-				
$h \to WW^*$	1.5%	1.27%	1.1%	8.7%	6.4%	3.3%	0.85%	-				
$h \to \tau^+ \tau^-$	1.2%	0.99%	2.3%	4.5%	24.4%	1.9%	3.2%	-				
$h o ZZ^*$	4.3%	4.4%	6.7%	28.3%	21.8%	8.8%	2.9%	-				
$h o \gamma \gamma$	9.0%	4.2%	12.0%	43.7%	43.7% 50.1%		6.7%	-				
$h \to \mu^+ \mu^-$	17%	18.4%	25.5%	97.6% 179.8%		31.1%	25.5%	-				
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	3.7%			-	_	-				

CEPC / FCC / ILC

collider	CEPC	FCC-ee	-ee ILC									
\sqrt{s}	$240\mathrm{GeV}$	$240\mathrm{GeV}$	$250\mathrm{GeV}$	350	$\overline{\text{GeV}}$	$500\mathrm{GeV}$						
$\int \mathcal{L}dt$	5 ab^{-1}	5 ab^{-1}	2 ab^{-1}	200	fb^{-1}		4 ab^{-1}					
production	Zh	Zh	Zh	Zh	$ u \bar{\nu} h$	Zh	$ u \bar{\nu} h$	$t \overline{t} h$				
$\Delta\sigma/\sigma$	0.51%	0.57%	0.71%	2.1%	2.1% -		-	-				
decay			$\Delta(\sigma)$	$BR)/(\sigma$	BR							
$h o b ar{b}$	0.28%	0.28%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%				
$h \to c\bar{c}$	2.2%	1.7%	2.9%	12.7%	16.7%	4.5%	2.2%	-				
h o gg	1.6% .	1.98%	2.5%	9.4%	11.0%	3.9%	1.5%	-				
$h \to WW^*$	1.5%	1.27%	1.1%	8.7%	6.4%	3.3%	0.85%	-				
$h \to \tau^+ \tau^-$	1.2%	0.99%	2.3%	4.5%	24.4%	1.9%	3.2%	-				
$h o ZZ^*$	4.3%	4.4%	6.7%	28.3%	21.8%	8.8%	2.9%	-				
$h \to \gamma \gamma$	9.0%	4.2%	12.0%	43.7%	50.1%	12.0%	6.7%	-				
$h \to \mu^+ \mu^-$	17%	18.4%	25.5%	97.6% 179.8%		31.1%	25.5%	-				
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	3.7%	_	_	-	-	-				

Kappa framework and EFT Framework

Two model-independent approaches

kappa framework

EFT framework

$$\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hff; SM)}$$

$$\delta c_Z\,, \quad c_{ZZ}\,, \quad c_{Z\square}\,, \quad c_{\gamma\gamma}\,, \quad c_{Z\gamma}\,, \quad c_{gg}\,, \quad \delta y_u\,, \quad \delta y_d\,, \quad \delta y_e\,, \quad \lambda_Z$$

Kappa Framework and EFT Framework

limitations of model-independent approaches

- large level of degeneracy
 parameter space for specific model much smaller
- correlation matrix often not provided
 over conservative estimation when not include correlation
- assumptions and simplifications
 may not be valid for a particular model

$$\chi^2 = \sum_{i} \frac{(\mu_i^{\text{BSM}} - \mu_i^{\text{obs}})^2}{\sigma_{\mu_i}^2} \quad \mu_i^{\text{BSM}} = \frac{(\sigma \times \text{Br})_{\text{BSM}}}{(\sigma \times \text{Br})_{\text{SM}}}$$

S. Su

9

2HDM in one slide

Two Higgs Doublet Model (CP-conserving)

$$\Phi_i = \begin{pmatrix} \phi_i^+ \\ (v_i + \phi_i^0 + iG_i)/\sqrt{2} \end{pmatrix}$$

$$v_u^2 + v_d^2 = v^2 = (246 \text{GeV})^2$$

 $\tan \beta = v_u/v_d$

$$\begin{pmatrix} H^0 \\ h^0 \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_1^0 \\ \phi_2^0 \end{pmatrix}, \quad A = -G_1 \sin \beta + G_2 \cos \beta \\ H^{\pm} = -\phi_1^{\pm} \sin \beta + \phi_2^{\pm} \cos \beta \end{pmatrix}$$

after EWSB, 5 physical Higgses

CP-even Higgses: h0, H0, CP-odd Higgs: A0, Charged Higgses: H±

$$\bullet \ \, \text{h^0/H^0 VV coupling} \quad g_{H^0VV} = \frac{m_V^2}{v} \cos(\beta - \alpha), \quad g_{h^0VV} = \frac{m_V^2}{v} \sin(\beta - \alpha).$$

alignment limit: $\cos(\beta-\alpha)=0$, ho is the SM Higgs with SM couplings. S. Su

2HDM parameters

	ф1	ф2
Type I	u,d,l	
Type II	u	d,l
lepton-specific	u,d	l
flipped	u,l	d

S. Su

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$-\sin\alpha/\cos\beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$

11

parameters (CP-conserving, flavor limit, Z₂ symmetry)

2HDM parameters

	ф1	ф2
Type I	u,d,l	
Type II	u	d,l
lepton-specific	u,d	I
flipped	u,l	d

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$-\sin\alpha/\cos\beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$

parameters (CP-conserving, flavor limit, Z₂ symmetry)

2HDM: Loop in the Alignment Limit

theoretical constraints

Tree-level 2HDM fit

2HDM, LHC/CEPC fit

2HDM: Tree + Loop

N. Chen, S. Li, T. Han, SS, W. Su, Y. Wu, work in progress

N. Chen, T. Han, SS, W. Su, Y. Wu, 1808.02037

2HDM: Tree + Loop

2HDM Model Distinction

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$-\sin\alpha/\cos\beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$	$\cos \alpha / \sin \beta$

2HDM: Loop in the Alignment Limit

Type II

$$\kappa_{\mathrm{loop}}^{\mathrm{2HDM}} \equiv \frac{g_{\mathrm{tree}}^{\mathrm{2HDM}} + g_{\mathrm{loop}}^{\mathrm{2HDM}}}{g_{\mathrm{tree}}^{\mathrm{SM}} + g_{\mathrm{loop}}^{\mathrm{SM}}}$$

$$\kappa_{1-\mathrm{loop}}^{\mathrm{2HDM}}|_{\mathrm{alignment}} = 1 + \Delta \kappa_{1-\mathrm{loop}}^{\mathrm{2HDM}}$$

2HDM: Tree + Loop

N. Chen, T. Han, SS, W. Su, Y. Wu, 1808.02037

Direct Search of Heavy Higgses @ 100 pp

Z-pole precision

	CEPC	ILC	TLEP-W/TLEP-Z
$\alpha_s(M_Z^2)$	$\pm 1.0 \times 10^{-4}$	$\pm 1.0 \times 10^{-4}$	$\pm 1.0 \times 10^{-4}$
$\Delta \alpha_{ m had}^{(5)}(M_Z^2)$	$\pm 4.7 \times 10^{-5}$	$\pm 4.7 \times 10^{-5}$	$\pm 4.7 \times 10^{-5}$
$m_Z [{ m GeV}]$	± 0.0005	± 0.0021	$\pm 0.0001_{\rm exp}$
$m_t [\text{GeV}] (\text{pole})$	$\pm 0.6_{\rm exp} \pm 0.25_{\rm th}$	$\pm 0.03_{\rm exp} \pm 0.1_{\rm th}$	$\pm 0.6_{\rm exp} \pm 0.25_{\rm th}$
$m_h \; [{\rm GeV}]$	$< \pm 0.1$	$< \pm 0.1$	$< \pm 0.1$
$m_W [{ m GeV}]$	$(\pm 3_{\rm exp} \pm 1_{\rm th}) \times 10^{-3}$	$(\pm 5_{\rm exp} \pm 1_{\rm th}) \times 10^{-3}$	$(\pm 8_{\rm exp} \pm 1_{\rm th}) \times 10^{-3}$
$\sin^2 heta_{ ext{eff}}^\ell$	$(\pm 4.6_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$	$(\pm 1.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$	$(\pm 0.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$
Γ_Z [GeV]	$(\pm 5_{\rm exp} \pm 0.8_{\rm th}) \times 10^{-4}$	± 0.001	$(\pm 1_{\rm exp} \pm 0.8_{\rm th}) \times 10^{-4}$

	Cu			EPC		FCC-ee				ILC						
	<i>a</i>	(correla	tion	σ		correla	tion	σ		correla	tion	σ		correla	tion
	σ		T	U	(10^{-2})	S	T	U	(10^{-2})	S	T	U	(10^{-2})	S	T	U
S	0.04 ± 0.11	1	0.92	-0.68	2.46	1	0.862	-0.373	0.67	1	0.812	0.001	3.53	1	0.988	-0.879
T	0.09 ± 0.14	-	1	-0.87	2.55	-	1	-0.735	0.53	-	1	-0.097	4.89	-	1	-0.909
U	-0.02 ± 0.11	-	-	1	2.08	-	-	1	2.40	-	-	1	3.76	-	-	1

Z-pole precision

	Cu			EPC		FCC-ee				ILC						
	σ		correla	tion	σ		correla	tion	σ		correla	tion	σ		correla	tion
			T	U	(10^{-2})	S	T	U	(10^{-2})	S	T	U	(10^{-2})	S	T	U
S	0.04 ± 0.11	1	0.92	-0.68	2.46	1	0.862	-0.373	0.67	1	0.812	0.001	3.53	1	0.988	-0.879
T	0.09 ± 0.14	-	1	-0.87	2.55	_	1	-0.735	0.53	-	1	-0.097	4.89	_	1	-0.909
U	-0.02 ± 0.11	-	-	1	2.08	-	_	1	2.40	-	_	1	3.76	-	-	1

2HDM: non-degenerate

$$\Delta m_a = m_A - m_H, \, \Delta m_c = m_{H^{\pm}} - m_H$$

Different Higgs Factories

Different Higgs Factories

Conclusion

- Higgs factory reach impressive precision
- Kappa-scheme/EFT scheme/model specific fit
- indirect constraints on new physics models
- complementary to Zpole precision program
- complementary to direct search @ 100 TeV pp

S. Su

22

Conclusion

100 TeV pp

An exciting journey ahead of us!