

CEPC Coupling Fits

Kaili Zhang¹, Zhen Liu², Jiayin Gu³

¹IHEP ²U of Maryland ³U of Mainz

The 2019 International Workshop on the High Energy Circular Electron Positron Collider 19th, November 2019 IHEP, Beijing

Outline

- CEPC Physics
- κ framework
- EFT Model results
- Synergy with other experiments
- To dos & Summary

Higgs Physics @ CEPC

H

CEPC object performance

See more in Mangi's slides

2019/11/19

Individual sub channels

Kaili@IHEP

Individual sub channels

1	0			0
	C	E	P	C

(240GeV,5.6ab⁻¹)	CDR, (2018)	Current: 2019.11	Reports in this workshop
$\sigma(ZH)$	0.50%		
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%		
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%		<u>Yu Bai</u>
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%		
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%		
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%		Ryuta Kiuchi
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	0.8%		Dan Yu
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	6.8%	5.4%	Fangyi Guo
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	12%	
$\sigma(vvH) * Br(H \rightarrow bb)$	3.0%		Hao Liang
$Br_{upper}(H \rightarrow inv.)$	0.41%	0.2%	<u>Ryuta Kiuchi</u>
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%		
Width	2.8%		

Keep analysis evolving since CDR published. Several results improved from the better analysis strategy. For each channel, see more details in <u>backups</u>.

To test the expected precision CEPC could ever reach, 1-sigma Gaussian uncertainty of the signal strength(Fix μ , $\sigma * Br = 1$) is used to quantify performance except the invisible channel.

Only statistical uncertainty considered in the table. It is said that theoretic systematics could be small(<1%) on lepton collider.

Combination Framework

- Multiple observables for workspace
 - Mass spectrum, BDT output, Flavor tagging likeness
 - Apply multi dimensional fit if possible
- Input correlation considered
 - σ*Br + Correlation Matrix = Complete Input.
 - Anti-correlation from measurement;
 - Major form: Higgs yields overlap
 - Cannot be ignored for some crucial channel, like vvH & ZH, H->bb

κ framework

• Higgs coupling defined as:

$$\kappa_z^2 = \frac{g(HZZ)}{g_{SM}(HZZ)} = \frac{\sigma(ZH)}{\sigma_{SM}(ZH)} \qquad ->0.5\%;$$

 $\sigma(vvH) * Br(H \rightarrow bb) \propto \kappa_w^2 * \kappa_b^2 / \Gamma_H.$

We expect excellent κ_z measurement from $\sigma(ZH)$,

and all other channel suffered from Higgs width.

Extract width with branch ratio: Constrained 7- κ

Keep width independent: 10κ

Constrained 7-k framework

Results are updated with latest HL-LHC projections.

CEPC would have ~1 order of magnitude improvement compared to pp collider.

While HL-HLC has good $\gamma/lepton$ search. Add constrain like $\kappa_{\gamma}/\kappa_{z}$ would significantly improve the coupling.

Independent κ fit

CEPC

Let Higgs width free. Highlights of lepton collider.

Higgs width brings a floor effect around 1.3%.

Correlation Matrix

2019/11/19

See Zhen's report

Kaili@IHEP

Lower entries: combining with HL-LHC (Corrleation reduced); 11

Direction of

EFT fit

• One parameterization of BSM contributions to Higgs couplings.

$$\mathcal{L}_{\mathrm{EFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} rac{oldsymbol{c}_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} rac{oldsymbol{c}_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)} + \cdots$$

- Powerful and not so friendly
 - Leading order D6 operators has 2499 parameter for 3 generation.

While theorists enjoy this badly.....

Higgs + aTGC + EW = 28 parameters in our framework

- CP-even only, no fermion dipole interactions,
- only consider the diagonal Yukawa couplings of t, c, b, τ , μ ,
- impose U(2) on 1st and 2nd generation quarks, exclude $Z\bar{t}t$ and Wtb couplings.
- We don't consider flavor violating Higgs or Z decays, which can be studied separately.
- CEPC also provides very precise EW measurement besides Higgs.
- Ideal for EFT study

aTGCs:

See Jiayin's Report

anomalous Triple Gauge Couplings

Higgs basis (12 parameters)

2019/11/19

Higgs related parameters in full fit

Synergy with other experiments

- CEPC
- The comparison is mainly referring [de Blas, J. *et al.* arXiv:1905.03764]
 - Also kappa and EFT results are shown between CEPC240, HL-LHC, Fcc, ILC.....
 - CEPC results updated a little since the paper published but no huge difference.

kappa-0	HL-LHC	LHeC	HE	-LHC		ILC			CLIC		CEPC	FC	C-ee	FCC-ee/eh/hh
			S 2	S2′	250	500	1000	380	15000	3000		240	365	
<i>к</i> _W [%]	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14
κ _Z [%]	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12
κ_{g} [%]	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49
κ_{γ} [%]	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98 *	5.0	2.2	3.7	4.7	3.9	0.29
$\kappa_{Z\gamma}$ [%]	10.	-	5.7	3.8	99*	86*	85 *	$120\star$	15	6.9	8.2	$81\star$	75 *	0.69
κ_c [%]	_	4.1	-	—	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95
κ_t [%]	3.3	-	2.8	1.7	—	6.9	1.6	—	_	2.7	-	—	_	1.0
κ_b [%]	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43
κ_{μ} [%]	4.6	-	2.5	1.7	15	9.4	6.2	320*	13	5.8	8.9	10	8.9	0.41
κ_{τ} [%]	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44

Ironno 2 coonorio					HL-LH	[C+				
kappa-5 scenario	ILC ₂₅₀	ILC ₅₀₀	ILC_{1000}	CLIC ₃₈₀	CLIC_{1500}	CLIC_{3000}	CEPC	FCC-ee ₂₄₀	FCC-ee ₃₆₅	FCC-ee/eh/hh
κ_W [%]	1.0	0.29	0.24	0.73	0.40	0.38	0.88	0.88	0.41	0.19
$\kappa_Z[\%]$	0.29	0.22	0.23	0.44	0.40	0.39	0.18	0.20	0.17	0.16
$\kappa_{g}[\%]$	1.4	0.85	0.63	1.5	1.1	0.86	1.	1.2	0.9	0.5
κ _γ [%]	1.4	1.2	1.1	1.4*	1.3	1.2	1.3	1.3	1.3	0.31
$\kappa_{Z\gamma}$ [%]	10.*	10.*	10.*	10.*	8.2	5.7	6.3	10.*	10.*	0.7
$\kappa_c ~[\%]$	2.	1.2	0.9	4.1	1.9	1.4	2.	1.5	1.3	0.96
κ_t [%]	3.1	2.8	1.4	3.2	2.1	2.1	3.1	3.1	3.1	0.96
$\kappa_b \ [\%]$	1.1	0.56	0.47	1.2	0.61	0.53	0.92	1.	0.64	0.48
κ_{μ} [%]	4.2	3.9	3.6	4.4*	4.1	3.5	3.9	4.	3.9	0.43
κ_{τ} [%]	1.1	0.64	0.54	1.4	1.0	0.82	0.91	0.94	0.66	0.46
BR _{inv} (<%, 95% CL)	0.26	0.23	0.22	0.63	0.62	0.62	0.27	0.22	0.19	0.024
$BR_{unt} \; ({<}\%, 95\% \; CL)$	1.8	1.4	1.4	2.7	2.4	2.4	1.1	1.2	1.	1.

	Γ^{SM} , r^2	Sce
$\Gamma_{II} =$	$\mathbf{I}_{H} \cdot \mathbf{K}_{H}$	kaj
• 11	$1 - (BR_{inv} + BR_{unt})$	kaj

Scenario	BR _{inv}	BR _{unt}	include HL-LHC
kappa-0	fixed at 0	fixed at 0	no
kappa-1 kappa-2	measured measured	fixed at 0 measured	no no
kappa-3	measured	measured	yes

Kappa / EFT Synergies

Though I am not the expert on this..... It looks fine.

CEPC: Higher energy

- CEPC
- Currently CEPC DO NOT HAVE ANY official plan for higher energy..... But we also did some PRELIMINARY study.
- ttbar run would mostly benefit the physics like EW, while for Higgs it improves width best.
 - Much more vvH event and better separation. Significantly improve the constrain.
- CEPC Higgs fitted in the 10κ framework.
 - (240GeV, 5.6iab) gives 2.9%, while (360GeV, 2iab) alone gives 2.8%, constrained by statistics and $\sigma(ZH)$.
 - Combined fit $\Delta(\Gamma_H) \approx 1.4\%$

*: Here we do not have the assumption about the exotic decay. This treatment is different with Fcc-ee, which believes exotic Br could not <0. If we take this assumption, the model-dependent width precision is 1.2%. While Fcc-ee have 1.3%.

• Generally CEPC could expect similar Higgs performance in higher energy run as Fcc-ee.

Evolving Combination

- Good enough results, still a lot of to do
 - Analysis update slowly. Esp. for some crucial channels.
 - Many progress Manqi showed in the performance session didn't enter the combination yet, like jet separation, tau finding.....
 - -> Limited manpower, Your effort would be appreciated!

- Still need to understand the correlation
- More powerful tools: HEPFit? Use workspace in each channel?
- Far from the CEPC fully/ultimate potential. 1M higgs!

backups

Channels Table_(2018.11)

All scaled to 240 GeV, 5.6ab⁻¹

Si	gnal	Drasisian	Si	gnal	Drasisian	Sig	nal	Dracision
Z	Н	Precision	Z	Н	PIECISION	Z	Н	Precision
	H->qq			H->WW			Н→үү, Zү	
	bb	1.32%		lvlv	9.52%	μμ		23.7%
ee	сс	13.5%	ee	evqq	4.56%	vv	γγ	10.5%
	gg	7.22%		μνqq	3.93%	qq		9.84%
	bb	0.99%		lvlv	7.29%	vv	Zγ(qqγ)	15.7%
μμ	сс	9.54%	μμ	evqq	3.90%	vv	H(WW fusio	on)
	gg	5.01%		μvqq	3.90%	vv	bb	3.00%
	bb	0.46%		qqqq	1.90%		Н→µµ	
qq	СС	11.1%		evqq	4.65%	qq		
	gg	3.64%	VV	μvqq	4.14%	ee		17 10/
	bb	0.39%		lvlv	11.5%	μμ	μμ	17.1%
vv	сс	3.83%	qq	qqqq	1.75%	vv		
	gg	1.47%		H->ZZ			Η→ττ	
H->I	nvisible		vv	μμqq	8.26%	ee		2.75%
qq		232%	vv	eeqq	40%	μμ		2.61%
ee	ZZ(vvvv)	370%	μμ	vvqq	7.32%	qq	ττ	0.95%
μμ		245%	ZH bkg c	ontribution	19.4%	vv		2.66%

$\sigma(ZH)$: H \rightarrow inclusive

- Possible by tagging higgs with recoil mass
- Zhenxing, arxiv:1601.05352
 - Z \rightarrow ee, 1.4%; Z \rightarrow µµ, 0.9%;
 - model independently
 - Z→qq: 0.65%, by Janice
 - extrapolated from 1404.3164
 - Combined: 0.5%
- $\sigma(ZH)$ correlations

Table 3. Estimation of biases of σ_{ZH} caused by potential variances of the Higgs decay branching ratios.

Decay mode	$Bias(\times 10^{-4})$
$H \rightarrow b\bar{b}$	-0.10
$H \rightarrow WW$	+0.20
$H \rightarrow gg$	-0.18
$H \rightarrow \tau \tau$	+1.11
$H \rightarrow c\bar{c}$	+0.05
$H \rightarrow ZZ$	-1.85
$H \rightarrow \gamma \gamma$	+2.56
$H \rightarrow \gamma Z$	-2.08
$H \rightarrow \text{inv.}$	+5.75

Full hadronic jets: bb/cc/gg/WW/ZZ

- Heavily relies on jet clustering algorithm; Hard to separate.
- 3d template fit
 - Mass
 - Dijet's B likeness and C likeness
- (Z \rightarrow vv H \rightarrow bb excluded the vvH part)
- Still, WW/ZZ suffered from the huge ZH events

Current combination didn't use the full hadronic W/Z and b/c/g correlation value. More study are needed to understand.

• Plan to apply categories like "STXS" to avoid the overlap.

Scan	µ_bb	μ_сс	µ_gg
eeH	1.3%	13.5%	7.2%
mmH	1.0%	9.5%	5.0%
qqH	0.5%	11.1%	3.6%
vvH	0.4%	3.8%	1.5%
Combined	0.28%	3.3%	1.3%

$vvH \rightarrow bb$

- 2d fit M_{jj}^{reco} & Cos θ_{jj}
- $vvH \rightarrow bb$ and $ZH \rightarrow bb$
 - Interference ~10% of vvH. (generally, 60: 1:10)
 - Add the interference term to vvH side currently;
 - If fix ZH process, Initial uncertainty is 2.8%.
 - ZH->bb constrained by other bb channels. If not, would be 3.4%.
 - $vvH \rightarrow bb$ and $ZH \rightarrow bb$ share the anti-correlation -45%. (-34% in ILC(1708.08912))
- $\sigma(vvH) * Br: 3.0\%$;
 - *σ*(*vvH*): 3.2%.

Invisible

ZH final state studied	Relative precision on $\sigma(H \rightarrow inv.)/BR$	Upper limit on $BR(H \rightarrow inv.)$
$Z \rightarrow e^+ e^-, H \rightarrow inv.$	368%	0.89%
$Z \rightarrow \mu^+ \mu^-, H \rightarrow inv.$	103%	0.32%
$Z \rightarrow q\overline{q}, H \rightarrow inv.$	46%	0.20%
Combination	42%	0.19%

ZH(Z-> $\mu^+\mu^-$,H->invisible)

 $ZH(Z \rightarrow e^+e^-, H \rightarrow invisible)$

ZH(Z->qq,H->invisible)

Kaili@IHEP

WW, ZZ

• ZZ

- Pre CDR ZZ result extrapolated from Fcc-ee. Overestimated;
- Current ZZ study suffered from huge background
- Also gained contribution from $H \rightarrow bb/cc/gg/WW$ decay.

• WW

• Much more channels studied since Pre_CDR.

Green: studied Yellow: Problematic

	Z	ee	μμ	vv	qq
ww	ev+ev				
	μν+μν				
	ev+μv				
	ev+qq				
	μv+qq				
	qq+qq				

	Z	ee	μμ	vv	qq
ZZ	ee+qq				
	μμ+qq				
	vv+qq				
	+				
(Invi)	vv+vv				
	qq+qq				
	ll+vv				

 \sim

N)

100

ττ, μμ

• *TT*:

- Develop LICH to identify lepton. Eff>99%
- Signal and ZH events (Main WW) share the same shape
- use $\log_{10}(D_0^2 + Z_0^2)$ + mass 2d fit to separate signal
 - Impact parameter, Distance from beam spot •

• μμ

• By Kunlin

	aah e2e2		
[%]	Stat	Eff	Rel
Initial	148.85	100	100
N_mum > 0, N_mup > 0	148	99.43	99.43
105 < M_mumu < 130 GeV	123.75	83.14	83.62
25 < N_particle < 115	123.02	82.64	99.41
55 < M_qq < 125 GeV	122.02	81.97	99.19
P_ppmumu < 32 GeV, 195 < E_ppmumu < 265 GeV	121.32	81.51	99.43
35 < E_mum < 100 GeV, 35 < E_mup < 100 GeV	120.89	81.22	99.65
16 < p_mumu < 72 GeV	120.31	80.82	99.51
N_em < 6, N_ep < 6, N_e < 10	119.33	80.17	99.19
E_em < 10 GeV, E_ep < 10 GeV, E_ee < 19 GeV	116	77.93	97.21
124 < m_mumu < 125 GeV	73.27	49.22	63.17

			0000
			CEPC
		>1800 9 8.1600 9 1400	CEPC CDR 5.6 ab ⁻¹ , 240 GeV Ζ→μ*μ ⁻ , Η→τ*τ ⁻
		1200 1000 800	CEPC Simulation S+B Fit Signal
		400-200-	Background
		120 1	25 130 135 M ^{Recoil} [G
H final state	Precision		
$^+\mu^ H \rightarrow \tau^+\tau^-$	2.6%	4 800 - CEPC	Simulation CEPC CDR
$e^ H \rightarrow \tau^+ \tau^-$	2.7%	Signal	it 5.8 ab , 240 GeV Ζ→μ⁺μ⁻, Η→τ⁺τ⁻
$\bar{\nu} \qquad H \rightarrow \tau^+ \tau^-$	2.5%	u 600 – Backg	round
$H \rightarrow \tau^+ \tau^-$	0.9%	-	
ombination	0.8%	-	
		400	(\uparrow)
CEPC Simulation S+B Fit Signal Background	CEPC 2019 5.6 ab ⁻¹ , 240 GeV Z→qq, H→μ*μ ⁻		-2 0 $\frac{2}{Log_{10}(D_0^2 + C_0^2)}$
[╈] ╋╋╋╋╋╋	+++++		

ZH final state

Combination

110

115

125

M_{uu} [GeV]

130

120

 $Z \rightarrow \mu^+ \mu^-$

 $Z \rightarrow e^+ e^-$

 $Z \rightarrow \nu \bar{\nu}$

 $Z \rightarrow q\bar{q}$

2300 2300

²²⁵⁰ Events 200

150

100

105

135 140 M^{Recoil} [GeV]

γγ, Ζγ

Kaili Zhang