

Status report on H->ZZ analyses and H->invisible analysis at CEPC

Ryuta Kiuchi

Institute of High Energy Physics

November 19th, 2019

The 2019 International Workshop on the High Energy Circular Electron Positron Collider

Contents

- Status report on HZZ analysis
 - Introduction
 - Result from $Z(\rightarrow \mu\mu)H(ZZ^*\rightarrow \nu\nu, qq)$
 - Result from $Z(\rightarrow vv)H(ZZ^*\rightarrow \mu\mu, qq)$
 - Result from Z(\rightarrow qq)H(ZZ* \rightarrow µµ, vv)
- Discussion on probing the anomalous HZZ coupling
- Status report on Higgs→invisible analysis
- Summary

Status of $H \rightarrow ZZ$ analysis

Min Zhong^a, Yanxi Gu^a, Ke Li^b, Shih-Chieh Hsu^b

Ryuta Kiuchi^c, Xin Shi^c, Kaili Zhang^c

^a USTC ,^b UW , ^c IHEP

Introduction to HZZ channel

 Since the state has 3 Z bosons, there are multiple combinations of final products.

• Final states having $(\mu^+\mu^-, jj, \nu\nu)$ are promising channels, owing to its clear signature. On the other hand, its low statistics could limit the final precision. (i.e., full-hadronic decay mode)

 This presentation summarizes the results from channels with the decay product combination of (μμ, jj, νν). Comparison of the cut-based analysis and the BDTapplied result will be presented.

Table : Promising decay product combinations

Monte Carlo Simulation

- CEPC_v4 (240GeV, 3T) configuration
- Generator: Whizard 1.95 (with ISR, L=5.6 ab⁻¹, M_{higgs}=125 GeV)

•Simulation :

Geant4 and Mokka with ISR and bremsstrahlung effects

 Reconstruction: Marlin and ArborPFA

Analysis flow chart

Signature of Z(-> $\mu^+\mu^-$)H(->ZZ*)

е

 $M_{recoil}(\mu^+\mu^-)$

μ

7

Signature of Z(-> $\mu^+\mu^-$)H(->ZZ*)

Distribution of invariant mass except two muons clearly shows each decay mode.

Jet clustering N(jet)=2

BDT result

Variables used in the BDT

P _{all visible}	E _{leading-jet}	Cos(θ)
Pt _{all visible}	E _{sub-leading-jet}	(RecoilM _{dimuon})
M _{dijet}	N(pfo)	(M _{all visible})
M _{dimuon}	Angle _(dijet-dimuon)	

 $Z(\rightarrow \mu\mu)H(Z\rightarrow \nu\nu, Z^*\rightarrow qq)$

 $Z(\rightarrow \mu\mu)H(Z\rightarrow qq, Z^*\rightarrow \nu\nu)$

Cut Flow: $Z(\rightarrow \mu\mu)H(Z\rightarrow \nu\nu, Z^*\rightarrow qq)$

		Cut	Signal	ZH background	2f background	4f background	
	_	Expected	1000	1140511	801811977	107203890	
		Pre-selection	616	30524	481301	515955	
		Signal or not	211	30307	481301	515955	At the end
		$M_{missing} > M_{dijet}$	107	1605	115175	28838	
	Cut-based	M_{dimuon}	95	726	73813	6836	$\sqrt{S+B}$
Cut-bas BDT	Cut-based	M_{dimuon}^{rec}	95	707	7894	1360	$\frac{1}{2} = 0.21$
		N(pfo)	94	336	3271	574	5
		$Pt_{visible}$	89	312	342	168	
	Γ.	$Angle_{min}$	85	298	283	139	
	further cuts	M _{missing} and M _{dijet}	62	80	254	46	
		Single Jet	54	67	0	9	
	Same cut						
	procedures	Cut	Signal	ZH background	2f background	4f background	
		Expected	1000	1140511	801811977	107203890	
		Pre-selection	616	30494	480828	515426	
	BDT	Signal or not	211	30282	480828	515426	
		$M_{missing} > M_{dijet}$	107	1608	115062	28811	$\sqrt{S+B}$
	\sim	M_{dimuon}	95	725	73741	6833	$\frac{1}{2} = 0.18$
		M_{dimuon}^{rec}	95	706	7886	1359	3
		N(pfo)	94	336	3268	574	
		$Pt_{visible}$	89	312	342	168	
	BDT	BDT score	57	22	14	9	11
							11

Cut Flow: $Z(\rightarrow \mu\mu)H(Z \rightarrow qq, Z^* \rightarrow \nu\nu)$

Cut	Signal	ZH background	2f background	4f background	
Expected	1000	1140511	801811977	107203890	
Pre-selection	616	30524	481301	515955	
Signal or not	211	30307	481301	515955	
$M_{missing} > M_{dijet}$	103	28701	366125	487117	
M_{dimuon}	92	22495	215657	239256	$\sqrt{S+B}$
M_{dimuon}^{rec}	92	22401	17380	20630	$\frac{1}{S} = 0.76$
N(pfo)	89	16776	321	16319	0
$Pt_{visible}$	74	4345	59	1273	
$Angle_{min}$	71	4186	59	1216	
M _{missing} and M _{dijet}	47	866	0	276	
Single Jet	42	716	0	260	

Cut	Signal	ZH background	2f background	4f background	-
Expected	1000	1140511	801811977	107203890	-
Pre-selection	616	30494	480828	515426	
Signal or not	211	30282	480828	515426	
$M_{missing} > M_{dijet}$	103	28674	365766	486615	$\sqrt{S+B} = 0.66$
M_{dimuon}	92	22473	215445	239023	$\frac{1}{S} = 0.00$
M_{dimuon}^{rec}	92	22379	17363	20611	b
N(pfo)	89	16760	321	16304	
$Pt_{visible}$	74	4341	59	1273	
BDT score	45	573	0	260	12

Cut-based

Recoil Mass($\mu\mu$) distribution: $Z(\rightarrow\mu\mu)H(Z\rightarrow\nu\nu, Z^*\rightarrow qq)$

Major backgrounds (Cut based)

name	scale	final
e2e2h_ww	0.08176	8
nnh_zz	0.06832	12
$zz_{l0taumu}$	1.04040	5

Major backgrounds (BDT)

name	scale	final
e2e2h_ww	0.08176	7
nnh_zz	0.06832	12
e2e2	7.46579	14

Preliminary results of signal fitting

An investigation about probing anomalous coupling of HZZ vertex along with the HZZ analysis

Motivation

-- To probe the anomalous couplings on HZZ vertex, differential observables are used and compared with EFT models.

-- Reaction of ee/pp->Z(l⁺l⁻)H(bb) is the process discussed in many places, not only its simple picture but also the statistics and S/N.

Question is, can we explore it through the framework shown in previous pages ?

Case1: $Z(\mu^{+}\mu^{-})H(ZZ^{*}->\nu\nu, jj)$

Much lower statistics than H->bb

Case2: $Z(\nu\nu)H(ZZ^* \rightarrow \mu\mu, jj)$

 One of motivation to use HZZ channel, Vs is also different

Case 1 has been chosen (because of rather simple kinematics) as a first trial and shown here.

Differential observables

• Analysis process of $Z(\mu^+\mu^-)H(ZZ^*->\nu\nu, jj)$ is applied on the signal $Z(\mu^+\mu^-)H(ZZ^*)$ sample.

Background is not considered this time

Diagram showing the angles used here. (from the ref. shown in next page)

Variables are defined as usual and is shown in left figure.

EFT model

-- We have referred :

"Resolving the tensor structure of the higgs coupling to Z-bosons via Higgs-strahlung", Shankha Banerjee, Rick S. Gupta, Joey Y. Reiness and Michael Spannowsky, arXiv:1905.02728

$$\begin{split} \Delta \mathcal{L}_6^{hZ\bar{f}f} \supset &\delta \hat{g}_{ZZ}^h \frac{2m_Z^2}{v} h \frac{Z^\mu Z_\mu}{2} + \sum_f g_{Zf}^h \frac{h}{v} Z_\mu \bar{f} \gamma^\mu f \\ &+ \kappa_{ZZ} \frac{h}{2v} Z^{\mu\nu} Z_{\mu\nu} + \tilde{\kappa}_{ZZ} \frac{h}{2v} Z^{\mu\nu} \tilde{Z}_{\mu\nu}. \end{split}$$

-- Amplitude is given in analytical form at first order (Vs/Mz), and we have tried to reproduce the differential observables based on the formula.

-- Application to our analysis with this approximation would be an issue.

EFT model

Comment

 The lower statistics might lead poorer limitation on the anomalous couplings

Further steps would be . . .

- Need to include background.
- Try to open the HZZ side. (Case2)
- Further Argument/consideration about the applicability (of this method) is necessary

Status of Higgs invisible analysis

Yuhang Tan

Institute of High Energy Physics

Please refer following link for the details :

https://indico.ihep.ac.cn/event/9832/session/9/contribution/17/material /slides/0.pdf

"The study of Higgs invisible decay", Y. Tan, CEPC Physics WS@PKU (2019)

Motivation

➤ The Higgs decay invisible in SM is via four neutrino, with BR=0.106%.

- > Many new physics models predict a significant branching ratio of Higgs to invisible.
- > ATLAS upper limit ~25%,CMS upper limit~ 24% for BR(Higgs->inv) at 95% C.L.
- > Higgs invisible decay is a sensitive probe for new physics.
- > The upper limit of BR(Higgs->inv) will be two orders of magnitude smaller on CEPC

The sample of signal and background in Higgs->invisible:

➤The signal channels:

 $ZH(Z \rightarrow \mu^+\mu^-, H \rightarrow invisible), ZH(Z \rightarrow e^+e^-, H \rightarrow invisible), ZH(Z \rightarrow qq, H \rightarrow invisible)$

The background channels:

• Two fermions

- Four fermions
- Sample details:

Cross section of major SM processes

Higgs->invisible State:

Set the expected precision on the measurement of σ (ZH)/BR(H->inv) and the 95% confidence-level (CL) upper limit on BR(H->inv) from a CEPC dataset of 5.6 ab^{-1}

ZH final state studied	Relative precision on $\sigma(ZH)/BR$	Upper limit on $BR(H \rightarrow inv)$
$Z \rightarrow e^+ e^-, H \rightarrow inv$	301%	0.698%
$Z \rightarrow \mu^+ \mu^-$, H \rightarrow inv	105%	0.329%
$Z \rightarrow q\overline{q}, H \rightarrow inv$	46%	0.204%
Combination	42%	0.194%

> The combined branching ratio is measure as $0.106\% \pm 0.045\%$ and the upper limit at 95% confidence level is estimated to be 0.194%

Higgs->invisible State:

- > Add the BMR part of Higss->invisible
- qqH dominants the precision and rely on recoil mass to separate the ZZ bkg
- Essential for qqH analysis, especially H->non jet final state

If the BMR degrades from 4% to 6%/8%: the higgs invisible measurement degrades by 11%/17%.(Under assuming BR(H->inv)=50%)

Summary

- Progress Status on HZZ analysis
 - We have analyzed 3 combinations of Z boson decays
 - Comparison of BDT-based/Cut-based analysis has been performed on each channel, for the first time.
 - An exploration has been done on the application of the EFT model
- Next step
 - Further optimization on event selection
- Progress Status on Higgs invisible decay analysis
 - U.L. on B.R. of the invisible decay of Higgs boson is obtained as 0.194%
 - Dependence on the BMR has been studied

Thank you very much !

Backup

Data samples

Signal

- Background (stored under /cefs/data/DstData/CEPC240/CEPC_V4/)
 - "2 fermions" (bhabha, e2e2, e3e3, qq, nn)
 - "4 fermions" (zz_h0, zz_sl0, zz_l04, ww_h0,,,,)
 - "ZH" (==other Higgs decays) (qqh_**, e1e1h_**, e2e2h_**, e3e3h_**, nnh_**)

Please refer the details at http://cepcsoft.ihep.ac.cn/guides/Generation/docs/ExistingSamples/

Distributions - I.

2fermion background

4fermion background

Distributions - II.

 $Z(\rightarrow \mu\mu)H(Z\rightarrow \nu\nu, Z^*\rightarrow qq)$

2fermion background

Recoil Mass($\mu\mu$) distribution: $Z(\rightarrow\mu\mu)H(Z\rightarrow qq, Z^*\rightarrow\nu\nu)$

Cut Flow: $Z(\rightarrow vv)H(ZZ^*\rightarrow \mu\mu, qq)$

	:							
		Cut		Signal	ZH backgrour	nd 2f background	d 4f background	
		Raw even	ts	6844	1140511	801811977	107203890	
		Pre-selec	tion	238	30494	480828	515425	
		$Signal \ or \ a$	not	226	30268	480828	515425	
		N(pfo)		198	10580	61902	268709	At the end
		$115 GeV < M_{visible}$	< 135 GeV	175	450	9694	6533	
Cut bog		$ \cos\theta < 0$.9	126	328	132	414	$\sqrt{S+B}$
Cul-Das	eu	$130 GeV < M_{dimuon}^{rec}$	< 220 GeV	123	285	125	366	$\frac{\sqrt{5+b}}{1} = 0.17$
		$43 GeV < P_{visible}$	< 60 GeV	109	157	6	105	S = 0.17
		$10 GeV < M_{dijet} <$	< 100 GeV	106	150	6	100	-
		$E_{leading}$ j	et	99	122	0	54	4
		$E_{subleading}$	iet	97	116	0	46	
	further cuts 🚽	$Angle_{\mu j}$	5	92	103	0	34	i i
		$13 GeV < M_{dimuon}$	< 100 GeV	92	100	0	33	/
		$\cos \theta_{visibl}$	le	92	100	0	33	/
	Same cut	$80 GeV < M_{visible}^{rec}$	< 107 GeV	87	89	0	30	i
	procedures	not $120 GeV < M_{dimu}^{rec}$	$_{on} < 130 GeV$	7 75	65	0	30	/
	procedures	not $120 GeV < M_{dije}^{rec}$	$t_{t} < 130 GeV$	71	46	0	26	/
		uije						
		Cut	Signal	ZH backg	round 2f	background	4f background	
BDT		Expected	6844	11405	, 11 8	801811977	107203890	-
		Dro coloction	020	2040	4	400000	E1E496	
		Pre-selection	250	5049	4	400020	515420	
	N. Contraction of the second se	Signal or not	226	3026	18	480828	515426	$\sqrt{S+B}$
		N(pfo)	226	2986	51	152634	444220	$\frac{1}{C} = 0.15$
		$M_{visible}$	201	710)	15429	10306	2
		$\cos \theta$	144	510)	367	831	
	BDT	BDT score	81	43		0	18	- 33

Higgs Invariant mass distribution: $Z(\rightarrow vv)H(ZZ^*\rightarrow \mu\mu, qq)$

Cut based results

BDT results

visible_mass_final(GeV)

Major backgrounds (Cut based)

name	scale	final
e2e2h_ww	0.08176	6
e3e3h_ww	0.0812	6
qqh_e3e3	0.4844	6
qqh_ww	1.6464	24
zz_sl0tau_down	1.10887	7
ww_sl0muq	1.10890	9
ww_sl0tauq	1.10899	6

Major backgrounds (BDT)

name	scale	final
qqh_e3e3	0.4844	13
qqh_ww	1.6464	14
qqh_zz	0.20216	6
$zz_{sl0tau_{down}}$	1.10887	7

Cut Flow: $Z(\rightarrow qq)H(Z\rightarrow vv, Z^*\rightarrow \mu\mu)$

cut	signal	zh background	2f background	4f background
Raw events	20254	1140511	801811977	107203890
Pre-selection	826	30494	480828	515425
Signal or not	203	30271	480828	515425
$M_{missing} > M_{dimuon}$	94	3167	18606	40769
N(pfo)	91	2502	2050	15114
$M_{visible}$	90	2220	557	6573
$cos\ theta$	72	1797	59	2156
M_{dimuon}^{rec}	70	1506	14	1942
$P_{visible}$	69	1459	14	1843
M_{dijet}	67	1207	0	1526
$E_{leading}$	67	1191	0	1203
$E_{subleading}$	67	1186	0	1119
$Angle_{\mu j}$	67	1165	0	1003
M_{dimuon}	67	1105	0	970
$cos \theta_{visible}$	64	1048	0	850
$M_{visible}^{rec}$	64	973	0	817
$Pt_{visible}$	63	962	0	775
not $\mu^+\mu^-HZZ$	63	962	0	775
$not \ \nu \nu HZZ$	56	884	0	744
Cut	Signal	ZH background	2f background	4f background
Expected	20254	1140511	801811977	107203890
Pre-selection	826	30494	480828	515426
Signal or not	203	30291	480828	515426
$M_{missing} > M_{dimuon}$	94	3179	18606	40770
N(pfo)	91	2502	2050	15115
M_{dijet}	85	1793	14	6178
$\cos \theta$	67	1439	0	2175
$M_{visible}$	67	1345	0	1476
$BDT \ score$	46	358	0	226

At the end

 $\frac{\sqrt{S+B}}{S} = 0.73$

BDT

Cut-based

 $\frac{\sqrt{S+B}}{S} = 0.55$

Cut Flow: $Z(\rightarrow qq)H(Z\rightarrow \mu\mu, Z^*\rightarrow \nu\nu)$

cut	signal	zh background	2f background	4f background
Expected	20254	1140511	801811977	107203890
Pre-selection	826	30494	480828	515425
Signal or not	203	30271	480828	515425
$M_{dimuon} > M_{missing}$	108	27103	462222	474656
N(pfo)	106	21479	27891	332167
$M_{visible}$	102	5496	2277	46449
$cos \theta$	82	4051	0	13096
M_{dimuon}^{rec}	77	3492	0	2617
$P_{visible}$	77	3461	0	2507
M_{dijet}	75	2795	0	1841
$E_{leading jet}$	74	2584	0	1466
$E_{subleading jet}$	73	2544	0	1397
$Angle_{\mu j}$	68	2157	0	963
M_{dimuon}	66	1832	0	772
$cos \theta_{visible}$	64	1734	0	570
$M_{visible}^{rec}$	50	844	0	395
$Pt_{visible}$	49	822	0	369
not $\mu^+\mu^-HZZ$	44	335	0	324
not $\nu\nu HZZ$	44	335	0	324
Cut	Signal	ZH background	2f background	4f background
Expected	20254	1140511	801811977	107203890
Pre-selection	826	30494	480828	515426
Signal or not	203	30291	480828	515426
$M_{missing} > M_{dimuon}$	108	27112	462222	474656
N(pfo)	106	21480	27891	332167
M_{dijet}	103	4833	141	265478
$\cos \theta$	80	3576	7	156098
$M_{visible}$	77	2913	0	8750
$BDT \ score$	38	166	0	140

At the end

 $\frac{\sqrt{S+B}}{S} = 0.60$

BDT

Cut-based

Recoil Mass(qq) distribution: $Z(\rightarrow qq)H(Z\rightarrow vv, Z^*\rightarrow \mu\mu)$

Cut based results

BDT results

Major backgrounds (Cut based)

name	scale	final
e2e2h_bb	0.21896	56
e2e2h_ww	0.08176	20
$e3e3h_{bb}$	0.21784	26
e3e3h_ww	0.0812	32
nnh_zz	0.06832	32
qqh_e3e3	0.4844	299
qqh_ww	1.6464	395
zz_sl0mu_down	1.08025	16
zz_sl0tau_up	1.10880	262
zz_sl0tau_down	1.10887	412
ww_sl0muq	1.10890	14
ww_sl0tauq	1.10899	15
_	1	

Major backgrounds (BDT)

name	scale	final
e3e3h_bb	0.21784	13
e3e3h_ww	0.0812	12
nnh_zz	0.06832	32
qqh_e3e3	0.4844	199
qqh_ww	1.6464	85
zz_sl0tau_up	1.10880	69
zz_sl0tau_down	1.10887	140

Recoil Mass(qq) distribution: $Z(\rightarrow qq)H(Z\rightarrow \mu\mu, Z^*\rightarrow \nu\nu)$

Cut based results

BDT results

Major backgrounds (Cut based)

name	scale	final
e2e2h_bb	0.21896	156
e2e2h_ww	0.08176	72
e2e2h_zz	0.01002	11
qqh_e3e3	0.4844	46
qqh_ww	1.6464	32
zz_sl0mu_up	1.49649	40
zz_sl0mu_down	1.08025	186
zz_sl0tau_up	5.8184	23
zz_sl0tau_down	1.10887	29

Major backgrounds (BDT)

name	scale	final
e2e2h_bb	0.21896	47
e2e2h_ww	0.08176	22
qqh_e3e3	0.4844	76
qqh_ww	1.6464	13
zz_sl0mu_down	1.0802	54
zz_sl0tau_up	1.10880	24
zz_{sl0tau_down}	1.10887	49