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Motivation
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The H→bb decay channel has the 
largest BR for the 125-GeV Higgs

Can be accessed at the LHC through 
associated (VH) production or gluon-
fusion at high transverse momentum
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Motivation
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At future lepton colliders such as the CEPC, 
most Higgs couplings will be measured at 
the 1% level

The increasing experimental precision 
mandates a similar increase in the precision 
of the corresponding theoretical predictions

CEPC CDR Oct 18



Overview of the calculation
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Inclusively known up to:
● N4LO QCD [Baikov, Chetyrkin, Kuhn hep-ph/0511063]
● NLO EW [Dabelstein, Hollik (1992); Kataev hep-ph/9708292]
● Mixed QCDxEW [Kataev hep-ph/9708292; Mihaila, Schmidt, Steinhauser 1509.02294] 

(also QCDxEW master integrals for Htt coupling [Chaubey, Weinzierl 1904.00382])

Differentially:
● NNLO QCD [Anastasiou, Herzog, Lazopoulos 1110.2368; Del Duca, Duhr, Somogyi, 

Tramontano, Trócsányi 1501.07226; Bernreuther, Cheng, Si 1805.06658]
● Interfaced to VH production at NNLO QCD [Ferrera, Somogyi, Tramontano 

1705.10304; Caola, Luisoni, Melnikov, Röntsch 1712.06954; Gauld, Gehrmann-De Ridder, 
Glover, Huss, Majer 1907.05836]

Aim: provide fully-differential predictions at N3LO QCD accuracy



Overview of the calculation
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● Treat the bottom quark as massless
● Focus on yb

2 terms

+         corrections

in the full theory
[Primo, Sasso, Somogyi, 
Tramontano 1812.07811]

Ongoing work to include neglected terms (as well as EW and QCDxEW)
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Differential N3LO coefficient:



Overview of the calculation

6

 

triple-virtual (3 loops, 2 partons)

Differential N3LO coefficient:
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triple-virtual (3 loops, 2 partons)

Differential N3LO coefficient:

real double-virtual (2 loops, 3 partons)

double-real virtual (1 loop, 4 partons)
triple-real (0 loops, 5 partons)
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uses a jet-clustering algorithm to define an m-jet 
observable from i final-state partons

Each contribution contains soft and collinear IR divergences that 
cancel upon combination into a suitably-inclusive observable



Projection-to-Born method
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We use the Projection-to-Born (P2B) method to deal with the IR divergences
[Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660]

Main idea: construct local counter-terms for the matrix elements projected 
onto a LO (Born) phase space.
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We use the Projection-to-Born (P2B) method to deal with the IR divergences
[Cacciari, Dreyer, Karlberg, Salam, Zanderighi 1506.02660]

Main idea: construct local counter-terms for the matrix elements projected 
onto a LO (Born) phase space.

Example with i=5 partons clustered into m=2 jets:

Generated event with 

cluster

counter-term

massive jet

single parton

single parton

single parton



Projection-to-Born method
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The IR divergences cancel exactly 
when the full phase space matches the 
Born-projected phase space.

This is the triple-unresolved region.

Born phase space in the Higgs rest frame:

with     the direction of the leading jet.



Projection-to-Born method
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To restore the N3LO coefficient we need to add back the counter-term that 
we arbitrarily subtracted:



Projection-to-Born method
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To restore the N3LO coefficient we need to add back the counter-term that 
we arbitrarily subtracted:

Ingredient 1: Inclusive N3LO H→bb width as a function of the 
Born kinematics



Projection-to-Born method

12

 

To restore the N3LO coefficient we need to add back the counter-term that 
we arbitrarily subtracted:

Ingredient 2: Differential NNLO H→bbj width and its Born projection
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two-loop amplitudes
for H→bbg
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two-loop amplitudes
for H→bbg

one-loop amplitudes
for H→bbgg and H→bbqq
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two-loop amplitudes
for H→bbg

one-loop amplitudes
for H→bbgg and H→bbqqtree-level amplitudes for

H→bbggg and H→bbqqg



Differential NNLO H→bbj width
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Two-loop H→bbg amplitudes calculated using the MIs from
[Gehrmann, Remiddi hep-ph/0008287 and hep-ph/0101124]

Checks:
- IR poles against the known IR structure [Catani hep-ph/9802439] 
- Finite part against an independent calculation
  [Ahmed, Mahakhud, Mathews, Rana, Ravindran 1405.2324]
- Two-loop soft/collinear-gluon limits

One-loop H→4 partons amplitudes calculated analytically
using generalized unitarity for helicity amplitudes
[Bern, Dixon, Dunbar, Kosower hep-ph/9403226]

Tree-level H→5 partons amplitudes calculated using BCFW 
recursion relations [Britto, Cachazo, Feng, Witten hep-th/0501052]



N-jettiness slicing
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We regulate the IR divergences present in our NNLO H→bbj calculation 
by using N-jettiness slicing [Boughezal, Focke, Liu, Petriello 1504.02131; Gaunt, 

Stahlhofen, Tackmann, Walsh 1505.04794]. For a parton-level event we define the 
3-jettiness variable [Stewart, Tackmann, Waalewijn 1004.2489]:

● The index j runs over the m partons in the phase space

● The momenta qi are the momenta of the three most energetic jets

● Qi=2Ei with Ei the energy of the i-th jet.



N-jettiness slicing
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cluster with jet 
algorithm

Doubly-unresolved region 
All radiation is either soft or collinear 



N-jettiness slicing
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cluster with jet 
algorithm

Singly-unresolved region
At least one parton is resolved



N-jettiness slicing
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Introduce a variable       that separates the phase space into two regions:



N-jettiness slicing
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Introduce a variable       that separates the phase space into two regions:

● The region            contains all of the doubly-unresolved regions of 
phase space and here the decay width is approximated using this 
factorization theorem from SCET [Stewart, Tackmann, Waalewijn 0910.0467]:

       

Jet functions
[Becher, Neubert
hep-ph/0603140]

Soft function
[Boughezal, Liu, Petriello 
1504.02540; Campbell, Ellis, 
RM, Williams 1711.09984]

Hard function
(finite part of the
two-loop amplitudes)
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Introduce a variable       that separates the phase space into two regions:

● The region            contains all of the doubly-unresolved regions of 
phase space and here the decay width is approximated using this 
factorization theorem from SCET [Stewart, Tackmann, Waalewijn 0910.0467]:

● The region          contains the singly-unresolved and fully-resolved 
regions. It is the NLO calculation of            . In our case we regulate 
the IR divergences using Catani-Seymour dipoles [hep-ph/9605323].        

Jet functions
[Becher, Neubert
hep-ph/0603140]

Soft function
[Boughezal, Liu, Petriello 
1504.02540; Campbell, Ellis, 
RM, Williams 1711.09984]

Hard function
(finite part of the
two-loop amplitudes)
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We have implemented our NNLO H→bbj calculation into a parton-level MC 
code based on MCFM [Campbell, Ellis et al].

We use the Durham jet algorithm. Starting at the parton level, for every 
pair of partons (i,j):

If yij < ycut the pairs are combined into a new object with momentum pi+pj .
The algorithm repeats until no further clusterings are possible and the 
remaining objects are classified as jets.

We present results in the Higgs rest frame.
      

 



Validation of the H→bbj NNLO N-jettiness calculation 
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Dependence of the NNLO H→3j coefficient on the unphysical parameter 
for three clustering options

Asymptotic behavior is 
established in each 
region.

ycut = 0.0001 corresponds 
to imposing a very weak 
jet cut



P2B with N-jettiness slicing
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Problem when m=2: how to define 3-jettiness for 2-jet events?

Differential 
NNLO H→bbj 
calculation using 
N-jettiness slicing



P2B with N-jettiness slicing
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Focus on triple-real contribution as an example:

            

             picks out the various jet topologies (2-, 3-, 4-, or 5-jet events):
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Focus on triple-real contribution as an example:

            

             picks out the various jet topologies (2-, 3-, 4-, or 5-jet events):

       a) events with 3 or more jets:
               straightforward to
              compute 3-jettiness



P2B with N-jettiness slicing
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Focus on triple-real contribution as an example:

            

             picks out the various jet topologies (2-, 3-, 4-, or 5-jet events):

       b) events with 2 jets: reverse last step of clustering to obtain exactly  
           3 sub-jets. Then apply 3-(sub)jettiness slicing.

decluster



Validation of the P2B+SCET method at NNLO 
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We introduce the transverse momentum and pseudo-rapidity of the leading 
jet with respect to a fictitious beam axis to fully test the IR cancellations 



Validation at N3LO 
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Dependence of the 2-jet N3LO coefficient on the 3-(sub)jettiness slicing 
parameter 

in this region change 
in N3LO coefficient 
is about 1%

Use

for predictions



The observed pattern is similar to 
the results obtained for e+e–  → jets 
at the same order [Gehrmann-De 
Ridder, Gehrmann, Glover, Heinrich 
0802.0813; Weinzierl 0807.3241]

Jet fractions

27

 



Results for H→bb at N3LO

28

The size of the corrections is observable-dependent. The scale dependence 
is considerably reduced as higher-order terms are included.



Results for H→bb at N3LO
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Can broadly observe three regions:

1) LO boundary: all phase spaces 
contribute, good convergence of 
the series and small residual scale 
dependence

2) “Bulk”: only phase spaces with 
3+ partons contribute, NNLO-like 
calculation

3) “Tail”: only phase spaces with 
4+ partons contribute, NLO-like 
calculation



Conclusions
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● At the CEPC, we will probe most Higgs couplings to the 1% level.

● Precise theoretical predictions for Higgs observables are needed to successfully 
compare theory and experiment.

● We computed the H→bb decay at N3LO accuracy focusing on the contribution 
in which the Higgs boson couples directly to massless bottom quarks.

● Using the Projection-to-Born method + N-jettiness slicing, we produced 
differential distributions and jet rates in the Higgs rest frame.

● Our calculation could be used outside of the rest frame for LHC/CEPC 
applications.



Extra slides



Inclusive N3LO H→bb width
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Can be obtained through the optical theorem by computing the 
massless          four-loop correlator of the quark-scalar current
[Chetyrkin hep-ph/9608318]



Results for H→bb at N3LO
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Can broadly observe three regions:

1) At LO mj=0. Must ensure that 
first bin be inclusive enough for IR 
cancellations. Large corrections

2) “Bulk”: phase spaces with 3+ 
partons contribute, NNLO-like 
calculation

3) “Tail”: phase spaces with 4+ 
partons contribute, NLO-like 
calculation



Two-loop amplitudes for H→bbg
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Soft-gluon limit: p3→0 which means y,z→0 simultaneously



Two-loop amplitudes for H→bbg
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Collinear limit: t→0 which means y→0 while z is fixed
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