ARCADIA CMOS Monolithic sensors for frontier vertex and silicon detectors

CEPC Workshop IHEP 2019
The 2019 International Workshop on the High Energy Circular Electron-Positron Collider (CEPC)
IHEP, Beijing
Novembre 19th, 2019

Manuel Da Rocha Rolo
on behalf of the ARCADIA Collaboration
Outline

- Trends on Monolithic Active Pixel Sensors for HEP
- Boundary conditions on the use of DMAPS for future Leptonic Colliders
- ARCADIA: design and characterisation program for CMOS DMAPS
Outline

- Trends on Monolithic Active Pixel Sensors for HEP
- Boundary conditions on the use of DMAPS for future Leptonic Colliders
- ARCADIA: design and characterisation program for CMOS DMAPS
MAPS: The Evolution of the Species

ULTIMATE in STAR
IPHC Strasbourg
First HEP MAPS system

ALPIDE in ALICE
First MAPS with sparse readout similar to hybrid sensors
Chip-to-chip communication for data aggregation

ATLAS CMOS
Depleted radiation hard MAPS with:
Sparse readout
Chip-to-chip communication
Serial power

FCC, CLIC, ...
Large stitched fast radiation hard MAPS with:
Sparse readout
Chip-to-chip communication
Serial power

JadePix2 (IHEP)
3 × 3.3 mm²

Standard: no full depletion
Modified: full depletion, better radiation tolerance
Trending up: Bigger, Stitched Silicon

Example of a wafer-scale imaging sensor chip for X-Ray applications developed at RAL (UK)

- 139.2 mm x 120 mm CIS, abutment 2x2 allows for a 278.4 mm x 240 mm active area!
- Towerjazz 180nm on 200 mm (8”) wafers, 1 sensor per wafer

Paves the way for all-silicon CMOS active interposers
- substrate handles signal, power and data interconnects
- particularly interesting assuming 12” wafers
Trending up: Thinner Silicon

- Technology:
 - Course + fine grinding
 - Critical: thinning damage, impact on devices

- Wafer handling:
 - Very thin wafers (< 100 um): use of carrier wafers and temporary wafer (de-)bonding technology

- IMEC results:
 - Thinning down to 15 um
 - Total thickness variation ~ 2 um on 200 mm wafer

- Wafer-scale ultra-thin (< 20 µm) stitched MAPS could bend into a cylindrical mechanically stable self-supporting shape:
 - purely Si based collider detector for tracking and PID with a VERTEX with an unprecedented low material budget of < 0.05 % X_0 per layer

50 µm thin 300 mm Silicon Interposer Wafer with Cu-RDL metallisation. Source: Fraunhofer IZM
Depleted MAPS for Future Detectors

<table>
<thead>
<tr>
<th></th>
<th>RHIC STAR</th>
<th>LHC - ALICE ITS</th>
<th>CLIC</th>
<th>HL-LHC Outer Pixel</th>
<th>HL-LHC Inner Pixel</th>
<th>FCC pp</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIEL ([n_{eq}/cm^2])</td>
<td>(10^{12})</td>
<td>(10^{13})</td>
<td>(<10^{12})</td>
<td>(10^{15})</td>
<td>(10^{16})</td>
<td>(10^{15-10^{17}})</td>
</tr>
<tr>
<td>TID</td>
<td>(0.2)Mrad</td>
<td>(<3)Mrad</td>
<td>(<1)Mrad</td>
<td>(80)Mrad</td>
<td>(2\times500)Mrad</td>
<td>(>1)Grad</td>
</tr>
<tr>
<td>Hit rate ([MHz/cm^2])</td>
<td>0.4</td>
<td>10</td>
<td>(<0.3)</td>
<td>(100-200)</td>
<td>(2000)</td>
<td>(200-20000)</td>
</tr>
</tbody>
</table>

- Hit rate and radiation hardness for Frontier Detectors could **require improvements of \(~2\) orders of magnitude** in respect to the state-of-the-art technology

- **Charge collection by drift**: faster signals, better radiation hardness
- **New architectures** for higher event rate capability
- **Advanced integration and interconnect technology** for large sensor area
Outline

- Trends on Monolithic Active Pixel Sensors for HEP
- Boundary conditions on the use of DMAPS for future Leptonic Colliders
- ARCADIA: design and characterisation program for CMOS DMAPS
Setting the stage... for leptonic colliders

The exploitation of the physics reach at the next generation electron-positron colliders requires outstanding flavour tagging performance with a precise determination of the track parameters of charged particles very close to the IP \(\rightarrow \) reconstruction of the displaced decay vertices of short-lived particles.

Impact on the vertex detector characteristics:

* state-of-the-art granularity for resolutions at the few micron level shall be guaranteed while preserving a high event rate capability;

* minimum multiple scattering at the innermost radius calls for a material budget at the level of 0.15\% X0 per layer;

* “compact” detectors requires advanced integration and packaging technologies, innovative cooling and assembly solutions.
Requirements for the CEPC Vertex

Intrinsic single-point resolution of the vertex detector in the absence of multiple scattering (depends on the geometry and number of layers)

\[\sigma_{r\phi} = a + \frac{b}{p(\text{GeV}) \sin^{3/2}\theta} \]

Impact parameter resolution

Track momentum

Polar track angle

3 concentric cylinders of double-layer pixelated vertex detector with:

- Single-point resolution of the first layer better than 3 \(\mu \text{m} \);
- Material budget below 0.15% \(X_0 \) per layer;
- Innermost tracker radius of 16 mm (material budget of 0.15% \(X_0 \) for the beam pipe);
- Detector occupancy below 1%
Boundary Conditions for a CMOS APS VTX

- excellent impact parameter resolution $O(3-5 \, \mu m)$ \Rightarrow pixel pitch below 25 μm
- very low material budget $O(0.15\% \, X_0$ per layer) \Rightarrow thin sensors, low power
 - CepC has a bunch spacing of 0.68 μs for the Higgs factory operation, 25 ns for the Z factory operation \Rightarrow no power pulsing possible (“a la ILC”)
 - the power consumption of the sensors and readout electronics should be kept below 20 mW/cm2, if the detector is to be air cooled (otherwise use silicon micro-channels)
- lightweight but robust support structure and related mechanics
 - low material budget detector modules need to integrate mechanical support, power and signal connections, and have sufficient stiffness to avoid vibration.
- low to moderate requirements for radiation tolerance
- moderate rate capability
Extrapolation to an Outer Silicon Tracker

* the requirements for the single point resolution are a function of the position of the tracker components, but necessarily more relaxed than for a vertex detector;
 - * pitch below 50 µm
 - * silicon thickness below 200 µm, needs to minimise multiple scattering
* considering material budget and power density, silicon strips are the natural candidate, but... a fully-pixelated CMOS silicon tracker would allow for:
 - better single point resolution
 - potentially lower material budget (CMOS wafer thinning down to 50 µm is relatively standard), lower cost and high throughput from a production of the APS silicon in a standard CMOS foundry

Practical implementation:

- CMOS passive strip sensors (volume, low-cost)
- larger, or longer, APS pixels with ADC, zero suppression, time stamp, or
- binary readout with DSP and clustering on-chip (periphery)
Outline

- Trends on Monolithic Active Pixel Sensors for HEP
- Boundary conditions on the use of DMAPS for future Leptonic Colliders
- ARCADIA: design and characterisation program for CMOS DMAPS
Towards a CMOS sensor design and fabrication platform allowing for:

✴ Active sensor thickness in the range 50 µm to 500 µm or more;

✴ Operation in full depletion with fast charge collection only by drift;

✴ Small charge collecting electrode for optimal signal-to-noise ratio;

✴ Scalable readout architecture with ultra-low power capability (O(10 mW/cm2));

✴ Compatibility with standard CMOS fabrication processes: concept study with small-scale test structure (SEED), technology demonstration with large area sensors (ARCADIA)

✴ Use of a deep sub-micron 110nm CMOS node for higher gate density
ARCADIA (INFN CSNV Call Project)

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays

INFN - Bologna, Milano, Padova, Perugia, Pavia, TIFPA, Torino

🌟 3-year >1M€ R&D project 2019-2021
🌟 Sensor&CMOS design, DAQ, System characterisation (medical, future colliders, space)
ARCADIA - Proposed Sensor

- Technology: 110 nm CMOS CIS technology (quad-well, both PMOS and NMOS), high-resistivity bulk
- **SEED**: Sensor with Embedded Electronics Development (INFN CSNV Project)
- Backside: diode surrounded by a guard-ring
- Custom patterned backside, process developed in collaboration with LFoundry
- Pixel size 25 µm x 25 µm: process, back-side pattern and geometry validated in silicon (both MATISSE and pseudo-matrices, electrical, laser, radioactive source and microbeam)
Small-scale demo: MATISSE

PIXEL ELECTRONICS

<table>
<thead>
<tr>
<th>DESIGN SPECS</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>CMOS 110 nm</td>
</tr>
<tr>
<td>Voltage Supply</td>
<td>1.2 V</td>
</tr>
<tr>
<td>Measurements</td>
<td>Hit Position Energy Loss</td>
</tr>
<tr>
<td>Number of Channels</td>
<td>24 x 24</td>
</tr>
<tr>
<td>Input Dynamic Range</td>
<td>Up to 24 ke-</td>
</tr>
<tr>
<td>Sensor Capacitance</td>
<td>~20 fF</td>
</tr>
<tr>
<td>Analog Gain</td>
<td>131 mV/fC 116 mV/fC</td>
</tr>
<tr>
<td>CSA Input Common Mode Voltage</td>
<td>> 600 mV</td>
</tr>
<tr>
<td>Local Memories</td>
<td>2 (~70 fF each)</td>
</tr>
<tr>
<td>Noise</td>
<td>< 100 e- ~40 e-</td>
</tr>
<tr>
<td>Shutter Type</td>
<td>Snapshot</td>
</tr>
<tr>
<td>Readout Type</td>
<td>Correlated Double Sampling Double Sampling</td>
</tr>
<tr>
<td>Readout Speed</td>
<td>Up to 5 MHz</td>
</tr>
<tr>
<td>Other Features</td>
<td>Internat test pulse Mask Mode Baseline Regulation</td>
</tr>
</tbody>
</table>
Small-scale demo: MATISSE

Charge Sensitive Amplifier
With a RESET transistor

Correlated Double Sampling

Pixel Matrix 24 x 24

EoC
Small-scale demo: pseudo-matrices

- **Sensor thicknesses:** 100 µm, 300 µm, 400 µm

- **Three matrices with different pixel sizes:** 10 µm (40 x 45), 25 µm (16 x 18) and 50 µm (8 x 9)

- **Front-side deep-pwell**, would host the CMOS electronics (no electronics on PMs)

- **All the collector nodes of a matrix are shorted** and connected to a PAD

- **Each pixel is shorted using Al metal lines** of increasing width per PM: 6, 8 and 15 µm
Results in a nutshell: pseudo-matrices

Cuts along the Metal + P and Metal + N lines on the energy map with varying bias voltages show uniform CCE above FD with ~1.7% loss over metals (100 µm thick).

Standard deviation maps show the expected higher electronic noise when the sensor is not depleted (below 30 V), due to the higher top capacitance.

(RUDE BOŠKOVIĆ INSTITUTE)* Zagreb, Croatia

- 600 keV to 2 MeV Tandetron
- TANDEM 1-6 MeV proton source
- LASER TCT laboratory

\(\lambda_{\text{red}} \) TCT Scan: CCE
\(\lambda_{\text{IR}} \) TCT Scan: Amplitude

(\(\lambda_{\text{red}} \) represents the red channel of the scan, and \(\lambda_{\text{IR}} \) represents the infrared channel.)
Results in a nutshell: MATISSE

Full depletion studies in 100-300-400 µm prototypes

Map of pixel reset voltage (MATISSE 24x24 pixel matrix) as a function of the back-side voltage applied to the sensor. Depletion starts from the back-side.

Preliminary results with ^{55}Fe

The ^{55}Fe emits monochromatic X-rays at 5.9 keV (K_{α}). A K_{β} line at 6.5 keV is also emitted with a relative probability below 5%.
Pixel size 25 µm x 25 µm: process, back-side pattern and geometry validated in silicon (both MATISSE and pseudo-matrices, electrical, laser, radioactive source and microbeam)

Matrix core 512 x 512, “side-abuttable” to accommodate a 1024 x 512 silicon active area (2.56 x 1.28 cm²). Matrix and EoC architecture, data links and payload ID: scalable to 2048 x 2048(1)

Triggerless binary data readout, event rate up to 10 MHz/cm²

“Strip-like” data-compressed column configuration

(1) 1D and 2D stitching available at LFoundry
ARCADIA: ongoing activities

TCAD 2D/3D sensor simulation: geometry, p-well spacing, node capacitance, transient

CMOS Analogue IP block design: continuous and discrete-time VFE design; 12-bit SAR ADC IP-core, custom LVDS Tx/Rx: LF11is prototyping run September 2019

CMOS Digital IP block design and Chip Integration:
- SPI and Serialiser (8b/10b) soft-IP Cores 110nm ready
- PnR of full double-column, full-matrix integration ongoing

Data acquisition: started development of DAQ for the full-chip

Characterisation: laser and microbeam tests with 100-300 µm pseudo-matrices @RBI (Zagreb), tests with Fe55, new laser test setup (spot size 8 µm) under construction

1st engineering run (dedicated front/back-side maskset): mid-2020
Future Roadmap and Perspective

- ARCADIA will build a design, characterisation and production framework for fully-depleted MAPS in a CMOS commercial foundry

- Design of 2D-stitched wafer-scale demonstrators, scalable DAQs, mechanics and cooling for large systems, flexible ultra-thinned silicon handling and assembling, integration of system-grade design:
 - EoI for AIDA++: INFN (IT), PSI + ETH + UZH (CH), Uni. Oxford (UK), IHEP (CN)

- Future collaborations, funding and resources will allow for the development of application-specific wafer-scale sensors for frontier detectors, medical, space and industrial applications
ARCADIA CMOS Monolithic sensors
for frontier vertex and silicon detectors

Thank You for your time!

Cost of a CMOS MAPS-based Silicon Tracker

Cost of $100,000/m² tracking area is achievable with the following assumptions
- > 75% Yield
- No stitching
- Wafer cost <$2,000 (only achievable using high volume CMOS manufacturing)