CEPC workshop November 18-20, 2019 at IHEP, Beijing

Status of CEPC Sci-W ECAL Yazhou Niu State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China n behalf of the CEPC calorimeter working group

Outline

- Performance requirements, roadmap and overview of ECAL prototype
- ECAL unit optimization and study
 - SiPM study
 - Scintillator strip
 - Readout Electronics
- CEPC Sci-W ECAL prototype progress
- Double-side prototype progress
- Summary

Outline

- Performance requirements, roadmap and overview of ECAL prototype
- ECAL unit optimization and study
 - ➢ SiPM study
 - Scintillator strip
 - **Readout Electronics**
- CEPC Sci-W ECAL prototype progress
- Double-side prototype progress
- Summary

Roadmap

- PFA oriented electromagnetic calorimeter
- ✓ Scintillator-tungsten ECAL
 - Sandwich structure
 - Absorber + SD + Electronics
 - High granularity
 - $-5mm \times 45mm$ scintillator strip
 - Larger dynamic ranger
 - Scintillator + SiPM
 - SPIROC Chip

Overview of ECAL prototype

- 6300 channels
- 30 EBUs + 30 DIFs
- > 15 "active layers"
- Full ECAL prototype

Outline

- Performance requirements, roadmap and overview of ECAL prototype
- ECAL unit optimization and study
 - ➢ SiPM study
 - Scintillator strip
 - Readout Electronics
- CEPC Sci-W ECAL prototype progress
- Double-side prototype progress
- Summary

- SiPM always have dark noise and cross talk
- Dark noise rate is ~100kHz on operation voltage
- CT possibility is ~15% for 15um and 8% for 10um
- DNR and CT both increase rapidly with over voltage

SiPM saturation study

- > SiPM response would arise saturation when incident photon raise
- > SiPM saturation can be described very well with the function and validated by test data
- > After correction, SiPM dynamic range can up to 15,000 photons within 3% error

SiPM saturation correct

$Higgs \rightarrow \gamma \gamma$

Pixel	10000	4500	1600
MIP LY / p.e.	20	50	60
PDE / %	10	25	30
Mean / GeV	124.79	124.88	111.45
σ/Mean	1.57%	1.58%	2.62%

 SiPM saturation effect can be corrected in very large range

SiPM saturation correct

- SiPM oversaturation correction would not operate
- 20 p.e. / MIP require no less than 4000 pixels number
- 10K pixel can meet dynamic range requirement for CEPC-ECAL

Scintillator strips study and optimization

- > Three classes coupling mode i.e. side-end, bottom-end and bottom-center
- > Light outputs along the length of the scintillator strip is non-uniformity, degrades the energy resolution
- > Bottom-center coupling have the minimum non-uniformity
 - Avoiding the dead area between scintillators introducing by SiPMs
 - Simplifying scintillators assembling process
 - Enabling to extend the SiPM area with more pixels

Scintillator strips study and optimization

• The non-uniformity of scintillator unit with such runway-shaped dimple can reach 4%

Outline

- Performance requirements, roadmap and overview of ECAL prototype
- ECAL unit optimization and study
 - ➢ SiPM study
 - Scintillator strip
 - **Readout Electronics**
- CEPC Sci-W ECAL prototype progress
- Double-side prototype progress
- Summary

EBU2e technological board

- > 210 channels readout with 6 SP2E chips divided into 5 rows and 42 columns
- > Using 10um S12571-010P / 15um S12571-015P SiPMs, produce by Hamamatsu
- > Total thickness is controlled under 6mm (< 1mm deviation) excluding DIF
- > DAC calibration and SiPM operation voltage adjustment realized
- > LED calibration and temperature monitor system can available

LED calibration

- > Check all channels SiPM response
- > Calibration SiPM gain by single photon electron spectrum
- > Calibration the ratios of high gain versus low gain
- > Define linearity range of High gain mode

Temperature monitor

- 16 temperature sensor distribution on the EBU
- Calibration of these sensors: to be done
- 0.1 ^oC precision can achieved
- Temperature feedback and DAC compensation: to be implemented

- 25ns shaping time for 10um and 15um SiPM
- There are using self-trigger(auto-trigger) with 16 memory cell
- SiPM work on operation voltage
- MIP fit: $landau \otimes gaus$ with range $(\frac{peak}{2}, \frac{peak}{45})$

MIP test with Sr90

- Both 10um and 15um distinguish MIP signal : 100%
 - > MIP variation: RMS / MIP MPV ~ 16% for 10um and ~ 17% for 15um
 - > Signal over Noise Ratio: MIP MPV / Pedestal RMS ~ 35 for 10um and ~ 135 for 15um
 - > Negligible variation between 16 memory cell

MIP test for 10um EBU

MIP test for 15um EBU

Status and schedule

- ✓ Two layers EBU prototype produce and test
- ✓ DAQ system produce and commission with two layers EBU
- ✓ Mechanical structure design and single layer produce
- ✓ SiPMs and scintillators study and purchase

Outline

- Performance requirements, roadmap and overview of ECAL prototype
- ECAL unit optimization and study
 - ➢ SiPM study
 - Scintillator strip
 - **Readout Electronics**
- CEPC Sci-W ECAL prototype progress
- Double-side prototype progress

• Summary

Additional Introduction

- Two efforts on Sci-W ECAL
 - > Chinese group for CEPC
 - > Japanese group for ILC (ILD)
- Collaboration between two efforts and Joint studies together
 - > Monthly meeting
 - > Optimization of sensitive unit (scintillator & SiPM)
 - > A technological Sci-W ECAL prototype --- Chinese group
 - > Two layers double-side readout prototype --- Japanese group

strip with Center Hole

- center hole/dimple is tested
- compared with G4-light simulation
- still many parameters must be tuned to get good agreement

Detection Layer with Double-Readout

- Suppress random hit by taking coincidence
- Possible to reconstruct position using charge or timing information from two side SiPM
- Strip still operational in case one of the SiPM readouts is dead
- Coincidence can be tested in offline analysis

Detection Layer with Double-Readout

- Two configuration 90mm strips for double readout have been tested
- Work more or less as expected, but need more studies

Dimple shape is not same with ECAL prototype

Summary

• Technological Sci-W ECAL prototype

- > Scintillator and SiPM joint study by Chinese and Japanese group
- > Two layers EBU 100% channels MIP test successfully
- > DAQ commission with two layers EBU will implement of late
- > 30 layers EBU will be produced by end-December for full prototype
- Double-side readout prototype
 - > Two configuration for double-side readout have been test
 - > Two layers prototype will be produced based on the standard EBU
- Currently, everything is going in the right direction

Backup

The thickness of absorber

• -	ligh	energy	photon	produce	process
------	------	--------	--------	---------	---------

- $Higgs \rightarrow \gamma \gamma \sim -100 GeV$
- BhaBha events ~125GeV
- ISR photons ~150GeV

• The most photon energy <100GeV in CEPC

Energy	95mm W	90mm W	85mm W	80mm W
175GeV	99.0%	98.6%	97.9%	96.9%
125GeV	99.2%	98.8%	98.2%	97.3%
75GeV	99.4%	99.1%	98.7%	98.1%

Wrapped and assembly in SIC (Shanghai Institute of Ceramic)

USTC

Electrics board

SIC

USTC

EBU cosmic ray test

SP2e - 015P

- Shut down ADC portion
- Using DAC scan threshold and counter 150ns dead time

SiPM Oversaturation

Cooling system

•37.6783 C

Temperature [C]

Layer 5

Layer 15

Object min: 3	6.8607	Std dev:	0.45	С	Object min: 39.0072	Std dev:	0.495	С
Object max: 4	0.3173	Area:	0.0617	m2	Object max: 42.4528	Area:	0.0617	m2

Electronics pedestal

SiPM w/o HV

- Pedestal mean various observable for different chips
- Pedestal sigma independent on the chips

LED SPS calibration for 10um EBU

15	2400		
19	2700		
23	2800		great
18	2600		general
22	2900		bad
26	2750		failed
75	2850		
77	2850		
79	2850		
162	2500		
158	2670		
154	2850		
163	2400		
159	2430		
155	2420		

Double-side prototype test setup

Trigger counter (5 \times 5 \times 5 mm^{\circ} plastic scinti.+SiPM)

Plastic scintillator : EJ-212

Reflector : ESR2 (laser-cut)

MPPC : S12571-015P (1 mm² 15μm-pixel)

