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Crystal Calorimeters

Three groups have started some work on ideas for a calorimeter for future e*e colliders
that use scintillating crystals for EM calorimetry

=¥ Overview: designs of crystal ECAL

* 3 major designs being pursued
* Long crystal bars with optical readout at both ends (Y. Wang, et al.)
» Use timing information for hit positions; less #channels
* Long crystal bars with optical readout at single ends (C. Tully, et al.)
* Less segmentation in the longitudinal direction;  Simpler integration?
* Thin crystal tiles with optical readout at single ends (Y. Liu, et al.)

» Started with ultra-fine segmentation (both longitudinal and transverse)
* Seeking trade-off between #channels and performance
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Advantages

The advantages of crystal EM calorimetry are well known
Separate signal from background
Separate closely spaced states
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So are the disadvantages
cz Compare to CMS at LHC
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Jet resolution needs
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For details, see Mangi Ruan’s talk at Sendai:

https://agenda.linearcollider.org/event/8217/contributions/44771/attachments/34967/54047/let Requirement-LCWS.pdf
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https://agenda.linearcollider.org/event/8217/contributions/44771/attachments/34967/54047/Jet_Requirement-LCWS.pdf

EM resolution needs

From Michael Peskin:

* Monophoton + dark matter search: This has actually be studied by Jenny List at DESY. She claims that the
analysis has only a weak dependence on photon energy resolution. Much more important is angular coverage
down to small angles.

e Study of tau+tau- in Z and Higgs decays: Here photon performance is needed to discriminate tau -> pi, rho,
al. However, Jean-Claude Brientl claimed that the crucial need is for good pattern recognition and photon ID
down to small energies, while the actual photon energy resolution is less important

* Efficiency for h-> gamma gamma: This is a real need; the photon-photon efficiency here is somewhat pathetic,
even worse than CMS. However, the statistics is not high in any event, and HL-LHC will give us an excellent
value of BR(h->gamma gamma)/BR(h->ZZ*).

* Graham Wilson suggested that improved EM resolution might be important in W studies. A method for
measuring the W mass is to use the endpoint in W->e nu. This wins strongly with better EM resolution.

e Similarly, finding the exotic mode h ->tau e under the background of h-> tau tau depends on good
performance at the endpoint.




Flavor physics

From Manqi Ruan

* On top of what you summarized, | would like to add
a small comment that the rich flavor program -
might appreciate a better EM energy resolution.
However, to identify a representative benchmark
with clear physics impact is not trivial.

CEPC Flavor Physics 1

70 OVERVIEW OF THE PHYSICS CASE FOR CEPC

Particle Tera-Z Belle 11 LHCb
b hadrons

B+ 6 x 101 3 x 101 (50ab T on T(45)) 3 x 1018
B° 6 x 1010 3% 10 (50ab~! on T(45)) 3 x 10'®
By 2% 101 3x 108 (5ab~tonT(55)) 8 x 10
b baryons 1% 1010 1% 10"
Ay 1 x 10t 1x 101
c hadrons

D° 2 x 101

Dt 6 1010

Df 3 x 101

A} 2 % 1010

7+ 3 x 10" 5% 100 (50ab~! on T(45))

Table 2.4: Collection of expected number of particles produced at a tera-Z factory from 10'2 Z-boson
decays. We have used the hadronization fractions (neglecting pr dependencies) from Refs. [431. 432]
(see also Ref. [433]). For the decays relevant to this study we alse show the corresponding number of
particles produced by the full 50ab™! on Y'(45) and 5ab~! on Y(55) runs at Belle IT [430], as well
as the numbers of b hadrons at LHCb with 50 fb—! (using the number of bb pairs within the LHCb
detector acceptance from [435] and the hadronization fractions from [431]).
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Comparative advantages i‘:

L

vs LHCb: =
Reconstruction of neutral i
particles =
s

L=

Reconstruction of jet charge

vs Belle II:
Higher Boost
Large phase space

Challenges:

Finding the decay products in
Jets! (similar to LHCb)...
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EM resolution needs

From Chris Tully

Correct assignment of hadrons to jets, even in events with 4 jets such as WW and ZZ, is said to be an important benchmark

Nov. 2019

Perhaps we can reduce the need to remove half the stats with better EM resolution?

And what is the size of the systematic error, even with this cut? Is it tractable unless we really can find all the pizeros?
And what about ZH with Z to gq and H to anything?

Are we really asking the question precisely enough to focus our goal?
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How do we relate this to something not - Jet confusion from color single reconstruction — jet clustering & pairing
measurable at HL-LHC? - Detector response
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Very useful in understanding affect of noise in resolution, scale
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Fig. 5.14: BGO Energy Linearity Measured with Bhabha Scattering.
The BGO energy calibration is adjusted every data-taking period to
agree with the 45.6 GeV Bhabha peak. No further adjustment was
needed to obtain less than 0.3% energy non-linearity for the 91.4 GeV
high-energy Bhabhas. The width of the Bhabha peak is a measurement

a0 50 's‘n‘ T 80 20 100
Measured Bhabha Electron Energy (GeV)

of the calibration errors.

JEW.HH (E)Z - O—ETHH (E)z + j\r.f) ’ U?mrinsic + (*FVD . UcorrelaLerl)Q + (Ucalibrahion ) E)z (55)

From “Baryon production in Z decay”, thesis, Christopher Tully, 1998
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Right now, the “most interesting” measurements
seem to emphasize hadronic resolution. Since 3-
4% hadronic resolution at 100 GeV is hard, and
there doesn’t seem to be a clear driver (yet) for
anything more than average EM resolution, seems

Nov. 2019 Sarah Eno, Beijing Workshop
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CMS calorimeter

The CMS calorimeter does not represent the ultimate in hadronic resolution
when using crystal EM calorimeters for two reasons:
* Transverse and longitudinal segmentation

» Crystals and bronze/scintillator sampling calorimeters have very different
e/h



Segmentation

CMS crystal calorimeter

* Front face of 2.2x2.2 cm?

* radius of 1.29m (subtended angle
0.0003 steradian)

* Only 1 longitudinal depth

* Segmentation of 1x1 cm?

: * At aradius of 2 m (subtended angle
e | 0.0001 steradian)
B, {om | | * 30 depth segments, but may be
| ] gained into 4 depth segments to save
= { t e on electronics? (more later)
| e S R e o
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PF resolution and segmentation

Thomson: https://arxiv.org/abs/0907.3577
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* However, Moliere radius for W is
0.93 cm and for PbWO, is 1.96 cm,
so not trivial to use this graph for
different material

Proposed segmentation for modern crystal
calorimeters 1x1 cm?at 2 m
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https://arxiv.org/abs/0907.3577

Longitudinal segmentation

from Manqi Ruan:

This preliminary plot shows the BMR (Higgs mass
resolution with full hadronic final state + standard cleaning)
at 240 GeV, with different ECAL Longitudinal segmentation.
To disentangle the intrinsic resolution from the clustering-
matching, we start from the baseline and Merges the
longitudinal cells into large cells. This treatment gives
exactly the same total energy response for single particle,
and provides a critical test for the PFA pattern recognition.
So, no significant effect observed once reducing the ECAL
layer from 30 to 15 or 10. Become significant once the
#layer is reduced to 6 or less, and leads to a degrading of
20% with only 3 layers.
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Crystals can be segmented longitudinally, at the expense of some dead material. Trade off between EM
resolution and JER. Certainly 3 segments can be imagined?




Oddly enough, the

conclusion is different
for the HCAL
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e/h in CMS Ecal/Hcal

The hadronic
energy resolution
of the CMS
calorimeter is
degraded by the
very different e/h
of its ECAL and
HCAL

T
300 GeVic

Eur. Phys. J. C (2009) 60: 359-373
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Fig. 5.3 Measured (/e)pp vs Egp after correcting the energies of

pions that interacted in the EB (see text for details)
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But now this might be mitigated?
Dual-Readout Capability

e PWO - excellent Cherenkov radiator (transparency cut off at 350 nm)
e Exploit Cherenkov photons above PWO emission spectrum Good PDE
e 2 SiPMs, one with optical filter > 600 nm, another <600 nm e

\ 512572-015C/P

PHWO Emission Spectrum optical filter (Typ.=25 °C, Vop=Ver + 4.0 V)
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s [ L
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Also works for BGO (used in TOF-PET applications) and other crystals
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Hadron fragmentation

An interesting parameter is the ratio of the hadronic to electromagnetic interaction length.

Having deeper hadronic showers helps separation
of gammas and neutral hadrons.

Radiation | Absorp. PR *g;

length length Charged ¢°
Hadrons

3.5 mm 99.5 mm ‘

PbWO4 89mm 240 mm 27

W:Cu 100:0 85:15 75:25
X, (mm) 3.5 4.4 5.1

. |Neutral
_|Hadron — T

Similar for baseline CEPC and for
potential crystal ECAL detectors.
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Related to hadronic splintering as well. P FA FaSt Sim u ation (Prel | m | narv)
Can timing help mitigate this splitting? - Mandi R
. .. rom angl nuan
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1g condition as in the Full simulation applied

>f modeling/tuning

Time/pattern recognition may help a lot, in identify the charged cluster fragmentations LCWS 2019 17
without arise the threshold for the neutral hadron significantly...




Other crystals possible

Small Moliere radius probably key

Crystal options

better for PFA

PWO: the most compact, the fastest, the cheapest

e Smaller Moliere radius in front segment (better shower separation)

PWO
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45 GeV electrons
XoTRK =0.3
ECAL length: 24 X

Module width: 10 cm

BGO: in between
Csl: the less compact, the slowest, the brightest _
better stochastic term
Crystal Density A X, Ry Relative LY Decay time Photon density dLY/dT Cost (10 m?) Cost*X,
fysta glem? cm cm cm @RT ns (LY /7,) ph/ns (% /°C) $/cm? $/cm?
PWO 8.3 209 0.89 2.00 1 10 0.10 25 8 71
BGO 71 227 1.12 2.23 70 300 0.23 -0.9 7 7.8
Csl 4.5 39.3 1.86 3.57 550 1220 0.45 +0.4 4.3 8.0
from: Journal of Physics: Conference Series 293 (2011) 012004
PWO \‘! b ol » ' Csl=——— = &
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Next Steps

‘All-silicon’ design concepts supported in HepSim

hepsim: https://atlaswww.hep.anl.gov/hepsim/#

. . . ey e . i i i i CLIC-SiD (CDR
Generic, which is politically useful. Use it to study e ey Ty S e
crystal detector with full PF

iy

SEF Z E v
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Next steps

e Scan sampling fraction from 0.3% (in benchmark calorimeter) to 100% (possible
with crystals) to see evolution of performance
e See what grouping into 3-4 readouts of 100% sampling gives best performance



Next steps

* Somehow get more people and money



Conclusions

Jet energy resolution is crucial for future e+e- colliders

However, it is not clear that the limits when using a precision EM calorimeter
have been tested

May be possible to have your cake and eat it too? Only detailed simulation can
resolve this.
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