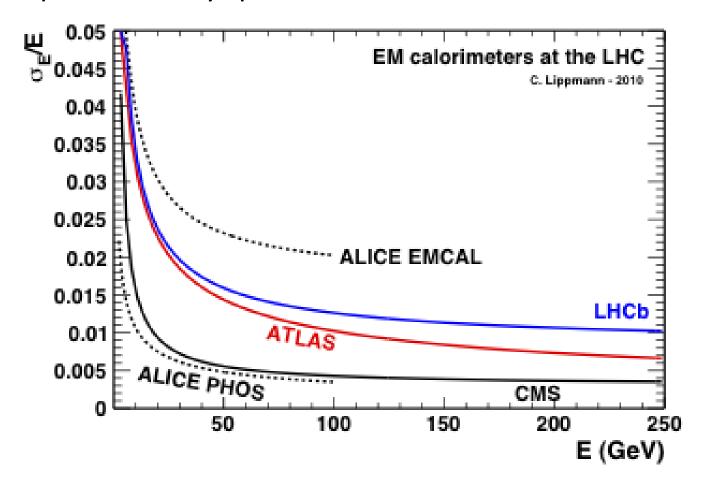
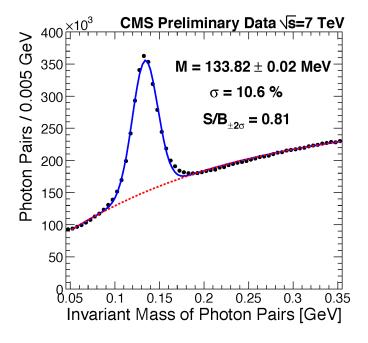
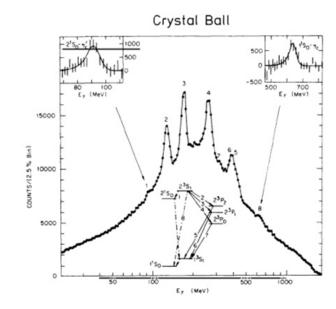

Crystal Calorimetry

November 2019
2019 International Workshop on the High Energy Circular
Electron Positron Collider

Sarah Eno
University of Maryland

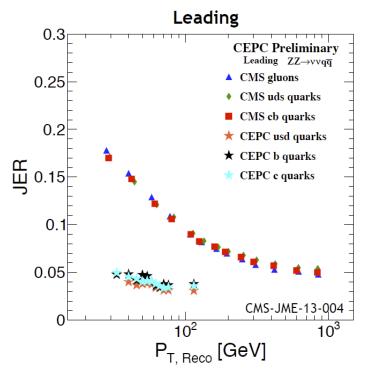

Crystal Calorimeters

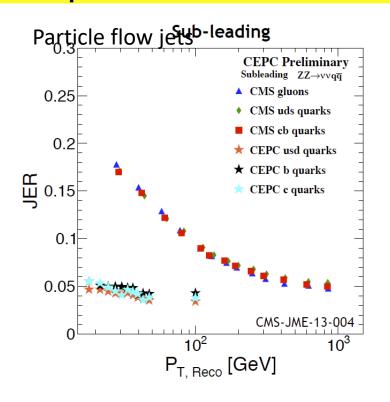

Three groups have started some work on ideas for a calorimeter for future e⁺e⁻ colliders that use scintillating crystals for EM calorimetry

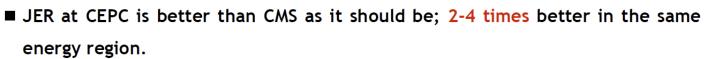


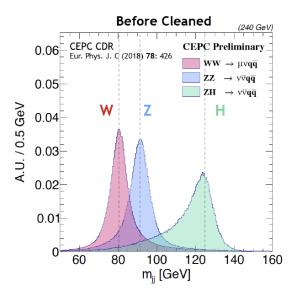
Advantages

The advantages of crystal EM calorimetry are well known Separate signal from background Separate closely spaced states

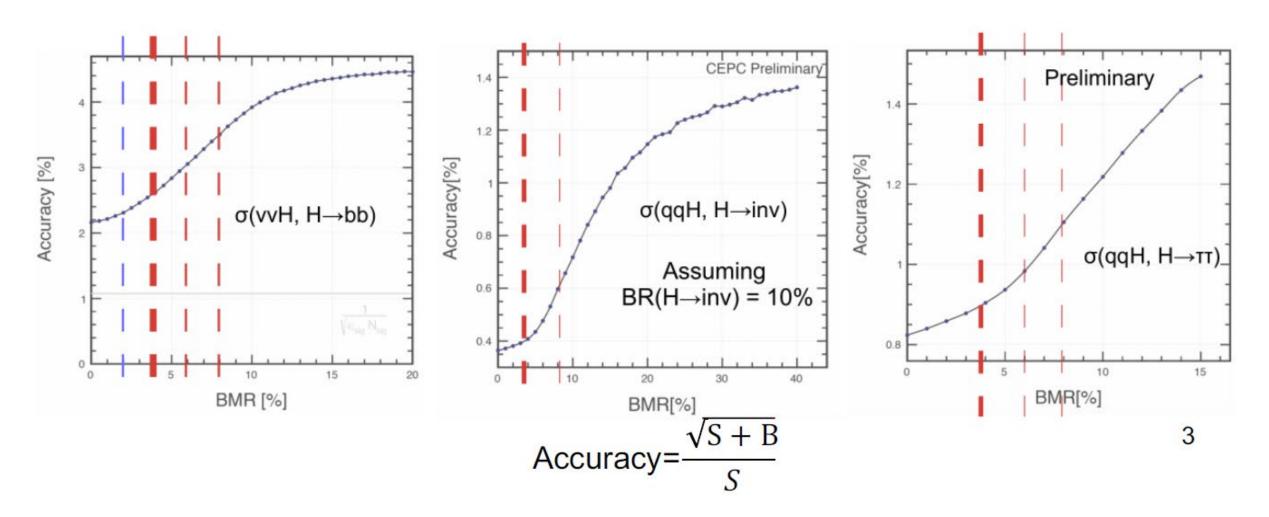





So are the disadvantages



Compare to CMS at LHC



Pei-Zhu Lai (NCU, Taiwan) 21 LCWS2019

Jet resolution needs

For details, see Manqi Ruan's talk at Sendai:

https://agenda.linearcollider.org/event/8217/contributions/44771/attachments/34967/54047/Jet Requirement-LCWS.pdf

EM resolution needs

From Michael Peskin:

- Monophoton + dark matter search: This has actually be studied by Jenny List at DESY. She claims that the
 analysis has only a weak dependence on photon energy resolution. Much more important is angular coverage
 down to small angles.
- Study of tau+tau- in Z and Higgs decays: Here photon performance is needed to discriminate tau -> pi, rho, a1. However, Jean-Claude Brientl claimed that the crucial need is for good pattern recognition and photon ID down to small energies, while the actual photon energy resolution is less important
- Efficiency for h-> gamma gamma: This is a real need; the photon-photon efficiency here is somewhat pathetic, even worse than CMS. However, the statistics is not high in any event, and HL-LHC will give us an excellent value of BR(h->gamma gamma)/BR(h->ZZ*).
- Graham Wilson suggested that improved EM resolution might be important in W studies. A method for measuring the W mass is to use the endpoint in W-> e nu. This wins strongly with better EM resolution.
- Similarly, finding the exotic mode h -> tau e under the background of h-> tau tau depends on good performance at the endpoint.

Flavor physics

From Manqi Ruan

 On top of what you summarized, I would like to add a small comment that the rich flavor program might appreciate a better EM energy resolution. However, to identify a representative benchmark with clear physics impact is not trivial.

CEPC Flavor Physics

70 OVERVIEW OF THE PHYSICS CASE FOR CEPC

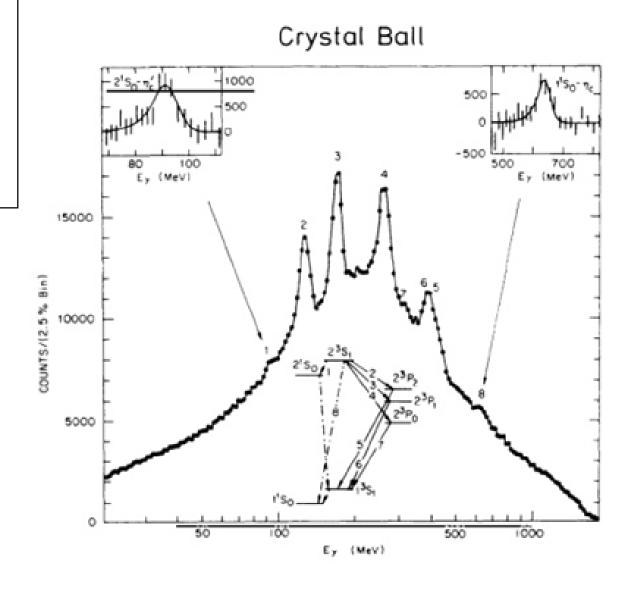
Particle	Tera- ${\cal Z}$	Belle II	LHCb	
b hadrons				
B^{+}	6×10^{10}	$3 \times 10^{10} (50 \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(4S))$	3×10^{13}	
B^0	6×10^{10}	$3 \times 10^{10} (50 \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(4S))$	3×10^{13}	
B_s	2×10^{10}	$3 \times 10^8 (5 \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(5S))$	8×10^{12}	
b baryons	1×10^{10}		1×10^{13}	
Λ_b	1×10^{10}		1×10^{13}	
c hadrons				
D^0	2×10^{11}			
D^+	6×10^{10}			
D_s^+	3×10^{10}			
Λ_c^+	2×10^{10}			
τ^+	3×10^{10}	$5 \times 10^{10} (50 \mathrm{ab^{-1}} \mathrm{on} \Upsilon(4S))$		

Table 2.4: Collection of expected number of particles produced at a tera-Z factory from 10^{12} Z-boson decays. We have used the hadronization fractions (neglecting p_T dependencies) from Refs. [431, 432] (see also Ref. [433]). For the decays relevant to this study we also show the corresponding number of particles produced by the full 50 ab⁻¹ on $\Upsilon(4S)$ and 5 ab⁻¹ on $\Upsilon(5S)$ runs at Belle II [430], as well as the numbers of b hadrons at LHCb with 50 bl⁻¹ (using the number of $b\bar{b}$ pairs within the LHCb detector acceptance from [435] and the hadronization fractions from [431]).

Comparative advantages

vs LHCb:

Reconstruction of neutral particles

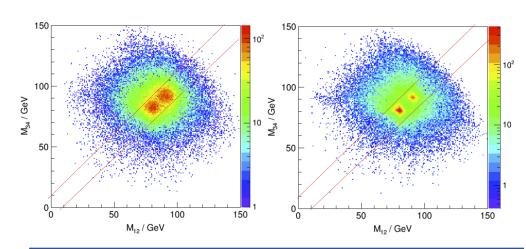

Reconstruction of jet charge

vs Belle II:

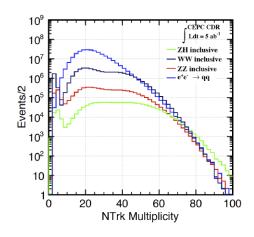
Higher Boost Large phase space

Challenges:

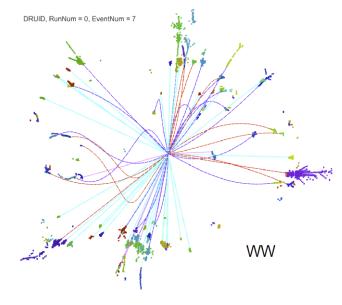
Finding the decay products in Jets! (similar to LHCb)...


EM resolution needs

From Chris Tully


Correct assignment of hadrons to jets, even in events with 4 jets such as WW and ZZ, is said to be an important benchmark

- Perhaps we can reduce the need to remove half the stats with better EM resolution?
- And what is the size of the systematic error, even with this cut? Is it tractable unless we really can find all the pizeros?
- And what about ZH with Z to qq and H to anything?
- Are we really asking the question precisely enough to focus our goal?


Reconstructed mass of the two di-jet system

How do we relate this to something not measurable at HL-LHC?

- Low energy jets! (20 120 GeV)
- Typical multiplicity ~ o(100)
- WW-ZZ Separation: determined by
 - Intrinsic boson mass/width

From Manqi Ruan's talk

- Jet confusion from color single reconstruction jet clustering & pairing
- Detector response

Nov. 2019 Sarah Eno, Beijing Workshop

Very useful in understanding affect of noise in resolution, scale

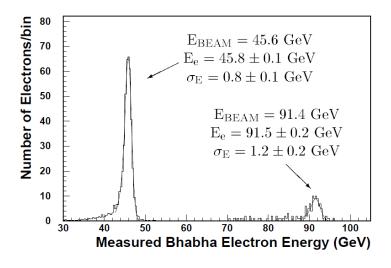


Fig. 5.14: BGO Energy Linearity Measured with Bhabha Scattering.

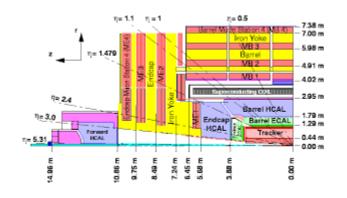
The BGO energy calibration is adjusted every data-taking period to agree with the 45.6 GeV Bhabha peak. No further adjustment was needed to obtain less than 0.3% energy non-linearity for the 91.4 GeV high-energy Bhabhas. The width of the Bhabha peak is a measurement of the calibration errors.

$$\sigma_E^{\text{Full}}(E)^2 = \sigma_E^{\text{Full}}(E)^2 + N_9 \cdot \sigma_{\text{intrinsic}}^2 + (N_9 \cdot \sigma_{\text{correlated}})^2 + (\sigma_{\text{calibration}} \cdot E)^2 \quad (5.5)$$

From "Baryon production in Z decay", thesis, Christopher Tully, 1998

Right now, the "most interesting" measurements seem to emphasize hadronic resolution. Since 3-4% hadronic resolution at 100 GeV is hard, and there doesn't seem to be a clear driver (yet) for anything more than average EM resolution, seems to be a killer for crystal calorimetry?????

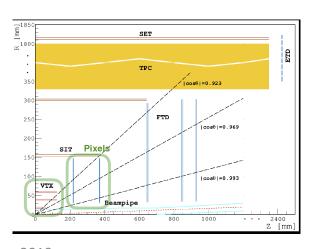
Or is it?

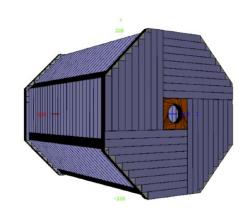

CMS calorimeter

The CMS calorimeter does not represent the ultimate in hadronic resolution when using crystal EM calorimeters for two reasons:

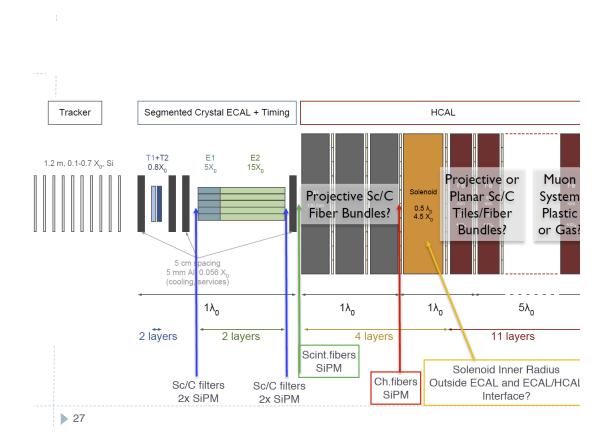
- Transverse and longitudinal segmentation
- Crystals and bronze/scintillator sampling calorimeters have very different e/h

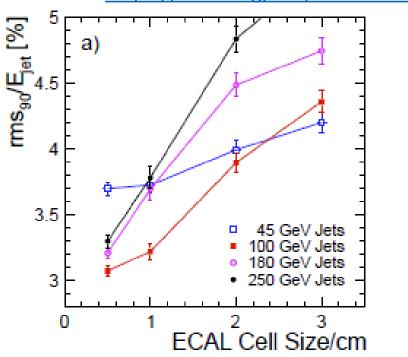
Segmentation


CMS crystal calorimeter



- Front face of 2.2x2.2 cm²
- radius of 1.29m (subtended angle 0.0003 steradian)
- Only 1 longitudinal depth

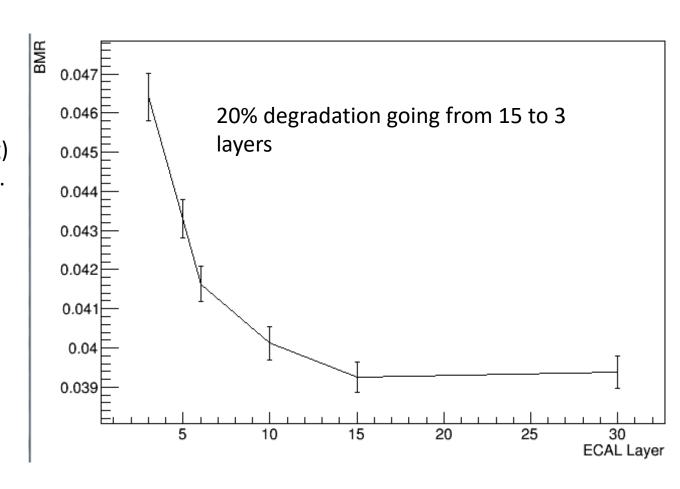

CEPC Baseline Wi-W


- Segmentation of 1x1 cm²
- At a radius of 2 m (subtended angle 0.0001 steradian)
- 30 depth segments, but may be gained into 4 depth segments to save on electronics? (more later)

PF resolution and segmentation

Proposed segmentation for modern crystal calorimeters 1x1 cm² at 2 m

Thomson: https://arxiv.org/abs/0907.3577


- For CEPC, mostly interested in the 45 and 100 GeV curve?
- However, Moliere radius for W is 0.93 cm and for PbWO₄ is 1.96 cm, so not trivial to use this graph for different material

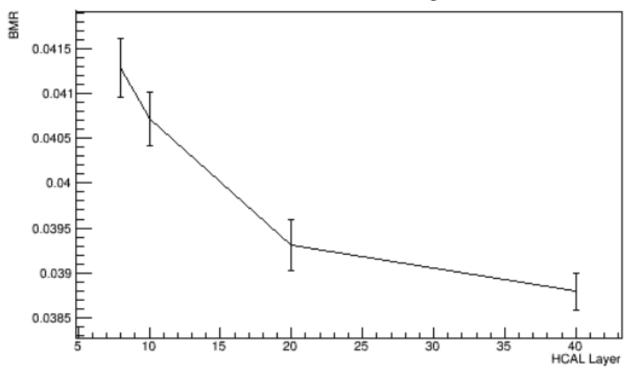
13

Longitudinal segmentation

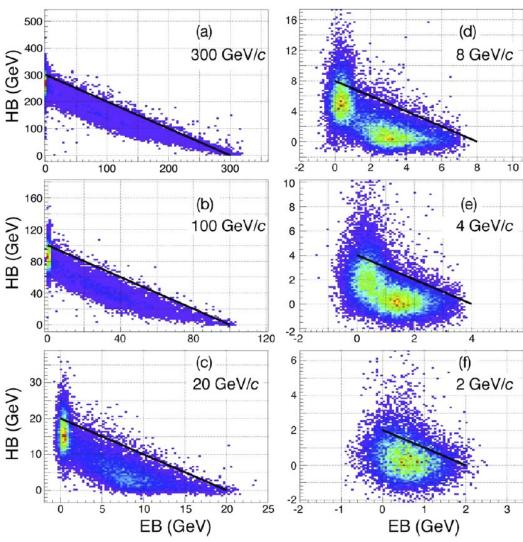
from Manqi Ruan:

This preliminary plot shows the BMR (Higgs mass resolution with full hadronic final state + standard cleaning) at 240 GeV, with different ECAL Longitudinal segmentation. To disentangle the intrinsic resolution from the clustering-matching, we start from the baseline and Merges the longitudinal cells into large cells. This treatment gives exactly the same total energy response for single particle, and provides a critical test for the PFA pattern recognition. So, no significant effect observed once reducing the ECAL layer from 30 to 15 or 10. Become significant once the #layer is reduced to 6 or less, and leads to a degrading of 20% with only 3 layers.

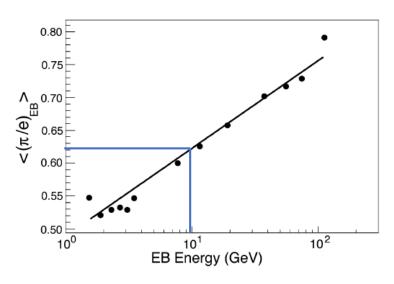
14


Crystals can be segmented longitudinally, at the expense of some dead material. Trade off between EM resolution and JER. Certainly 3 segments can be imagined?

Oddly enough, the conclusion is different for the HCAL


iviass_a (Gev)

BMR HCAL Layer 40



e/h in CMS Ecal/Hcal

The hadronic energy resolution of the CMS calorimeter is degraded by the very different e/h of its ECAL and HCAL

Eur. Phys. J. C (2009) 60: 359-373

Fig. 5.3 Measured $(\pi/e)_{EB}$ *vs* E_{EB} after correcting the energies of pions that interacted in the EB (see text for details)

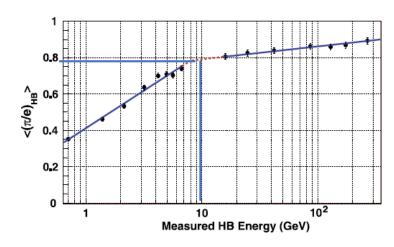
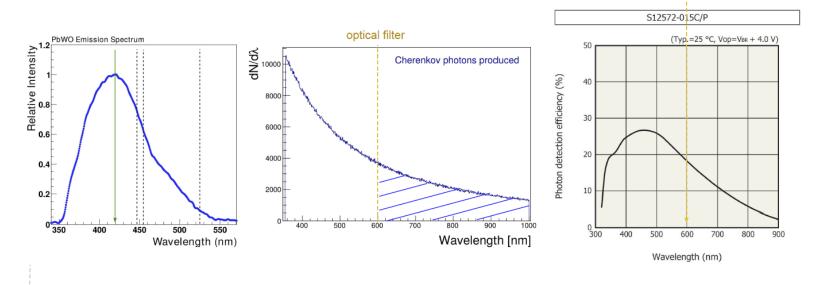



Fig. 5.2 π/e vs E_{HB} for events interacting in the HB. The data are fit to two separate log functions with a break at about 8 GeV

But now this might be mitigated?

Dual-Readout Capability

- PWO excellent Cherenkov radiator (transparency cut off at 350 nm)
- Exploit Cherenkov photons above PWO emission spectrum
- 2 SiPMs, one with optical filter > 600 nm, another <600 nm

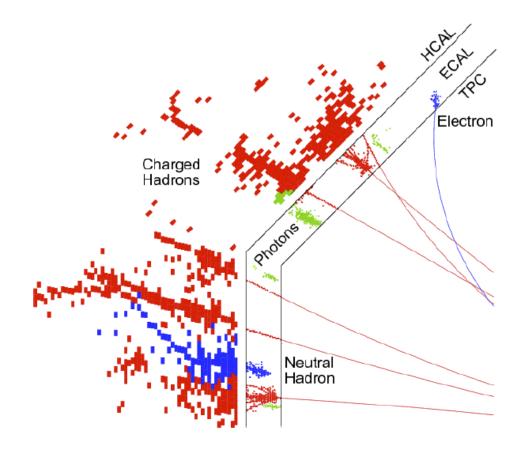
Also works for BGO (used in TOF-PET applications) and other crystals

> 38

Chris Tully

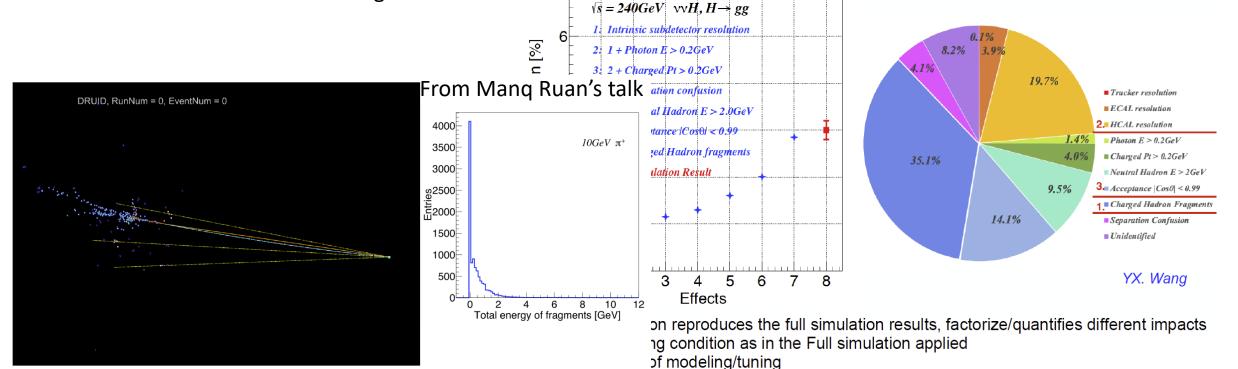
Good PDE at 600 nm

Hadron fragmentation


An interesting parameter is the ratio of the hadronic to electromagnetic interaction length.

Having deeper hadronic showers helps separation of gammas and neutral hadrons.

Material	Radiation length	Absorp. length	ratio	
W	3.5 mm	99.5 mm	28	
PbWO ₄	8.9 mm	240 mm	27	


W:Cu	100:0	85:15	75:25
X ₀ (mm)	3.5	4.4	5.1

Similar for baseline CEPC and for potential crystal ECAL detectors.

Related to hadronic splintering as well. Can timing help mitigate this splitting? Which would have better timing?

PFA Fast simulation (Preliminary)

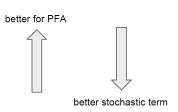
Time/pattern recognition may help a lot, in identify the charged cluster fragmentations without arise the threshold for the neutral hadron significantly...

LCWS 2019 17

From Manqi Ruan

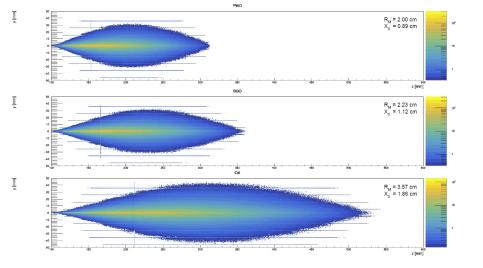
Other crystals possible

Small Moliere radius probably key


Crystal options

PWO: the most compact, the fastest, the cheapest

BGO: in between


from: Journal of Physics: Conference Series 293 (2011) 012004

Csl: the less compact, the slowest, the brightest

Crystal	Density g/cm³	λ _I cm	X ₀ cm	R _M cm	Relative LY @ RT	Decay time ns	Photon density (LY / $\tau_{\rm D}$) ph/ns	dLY/dT (% / °C)	Cost (10 m³) \$/cm³	Cost*X ₀ \$/cm²
PWO	8.3	20.9	0.89	2.00	1	10	0.10	-2.5	8	7.1
BGO	7.1	22.7	1.12	2.23	70	300	0.23	-0.9	7	7.8
CsI	4.5	39.3	1.86	3.57	550	1220	0.45	+0.4	4.3	8.0

Smaller Moliere radius in front segment (better shower separation)

45 GeV electrons $X_0^{\text{TRK}} = 0.3$ ECAL length: 24 X_0 Module width: 10 cm

10

Next Steps

ttps://atlaswww.hep.anl.gov/hepsim/doc/lib/exe/detail.php?id=fcs%3Acepc%3Aintro&media=fcs:mc_pflow_sidcc1.png

'All-silicon' design concepts supported in HepSim hepsim: https://atlaswww.hep.anl.gov/hepsim/# SiD (SiD LO3) CLIC-SiD (CDR) SICPEC, SIDB Generic, which is politically useful. Use it to study (e+ e- up to 3 TeV) (e⁺ e⁻ up to 1 TeV) (e+ e-250 GeV) crystal detector with full PF atlaswww.hep.anl.gov/hepsim/doc/doku.php?id=fcs:cepc:intro 2.0 off Q S Reload @ UMCP W Wikipedia, the free... S Reload @ UMCP computer general d0 tools Programming Z-peak using PFA - HepSim Docker image Simulation with FPadSim SiFCC + 7 variations Working with geometries SiEIC, TopSide Let's calculate Z peak from particle-flow objects after full reconstruction using Pandora. You do not re Linking event storages (FCC-hh, pp 100 TeV) (ep, 35-141 GeV) Performance detectors: Jas4pp description command if you have done this before. - HepSim contributions Physics reach studies using Geant4 - Public results cd examples/slic/ Open tasks simulations & full reconstruction Used resources hs-get gev250ee_pythia6_zpole_ee%rfull002 gev250ee_pythia6_zpole_ee # download Changelog Playground for various technologies and fpad mc pflow.py hvs&Perf Studies detector optimizations Tuture collider studies Fast turnover to modify detector & create Ė ⊕ CEPC studies CEPC detector studies events samples CEPC studies plan Z-peak from PFA CEPC tracking studies **⊕** ⊕ EIC studies Share similar design, but differ in sizes, calorimeter readouts etc THE-LHC studies HL-LHC studies **Interfaced with common Monte Carlo samples i** ILC studies earch Search ools

Next steps

- Scan sampling fraction from 0.3% (in benchmark calorimeter) to 100% (possible with crystals) to see evolution of performance
- See what grouping into 3-4 readouts of 100% sampling gives best performance

Next steps

• Somehow get more people and money

Conclusions

- Jet energy resolution is crucial for future e+e- colliders
- However, it is not clear that the limits when using a precision EM calorimeter have been tested
- May be possible to have your cake and eat it too? Only detailed simulation can resolve this.

backup