On the limits of the hadronic energy resolution of calorimeters

Sehwook Lee (KNU), Michele Livan (Pavia), Richard Wigmans (TTU)

CEPC Workshop 2019, Beijing, Nov. 19, 2019

The Physics of Hadron Shower Development

The Calorimeter Response

The calorimeter responses to the em and non-em components of hadron showers

Fluctuations of electromagnetic shower fraction

Large, non-Gaussian fluctuations in fem

The em shower fraction (fem) depends on the energy of pion and the type of absorber material

20 GeV π⁻ (Phyficer (RD)52) calorimeter)

CMS Calorimeter

Deviation from 1//E scaling *in hadronic energy resolution*

ATLAS Calorimeter

Nuclear binding energy losses

The Poor Performance of Hadron Calorimeter

Two approaches to improve the hadronic performance

1. Compensation

- the total kinetic energy of neutrons

2. Dual-Readout

- the electromagnetic shower fraction

These are measurable quantities that are correlated to the binding energy losses

Compensation

Boosting the signal contributed by the MeV-type neutrons by means of adjusting the sampling fraction achieves e/h=1

SPACAL 1989

Pb - plastic fibers (4:1 volume ratio) Hadronic signal distributions measured with SPACAL (Pb-Scintillation fiber) (Compensating Calorimeter)

Dual-Readout Calorimetry

- Dual-readout method (DREAM)
 - The electromagnetic shower fraction is measured by means of comparing scintillation (dE/dx) and Cerenkov signals event by event. The fluctuations in f_{em} can be eliminated.
- e/h=1 can be achieved without the limitations
 - the small sampling fraction
 - a large detector volume
 - a long signal integration time

Dual-Readout Method

Hadronic Performance of a Dual-Readout Fiber Calorimeter

Comparison of Dual-Readout and Compensation

Prediction of the limits of the hadronic energy resolution

- GEANT 4.10.3-patch2
- FTFP_BERT physics list
- Very large absorber to contain the entire hadron shower
- 10, 20, 50, 100, 200, 500, 1000 GeV π⁻ sent to Cu and Pb (10,000 events)
- Obtained information in each event:
 - The em shower fraction
 - The total nuclear binding energy loss
 - The total kinetic energy of the neutrons

Correlation between binding energy loss and f_{em} (a) and kinetic energy of neutrons(b)

Results are for 100 GeV π *- in lead absorber*

Correlation between binding energy loss and non-em energy (a) and kinetic energy of neutrons(b)

20 GeV π⁻ in copper

<EM Shower fraction> and <Binding Energy Loss>

Limit on the hadronic energy resolution in the absence of DR or compensation

Limits on the hadronic energy resolution

Conclusion

- Dual-readout and compensation approaches remedy the poor hadronic performance caused by fluctuations of the invisible energy losses
- Theoretical limits of the hadronic energy resolution were investigated
- Dual-readout has better hadronic energy resolution than compensation
- The good energy resolution, signal linearity, Gaussian response functions and the same calorimeter response to electrons, pions and protons are the characteristic of these two methods in the hadron calorimetry

A hadronic signal distribution is a superposition of signal distributions for events with the same

em fraction

neutron content

Backup

Fluctuations of Hadron Showers

500 GeV Pions, Cu absorber

Red: e-, e+ Cyon: Other Charged Particles

