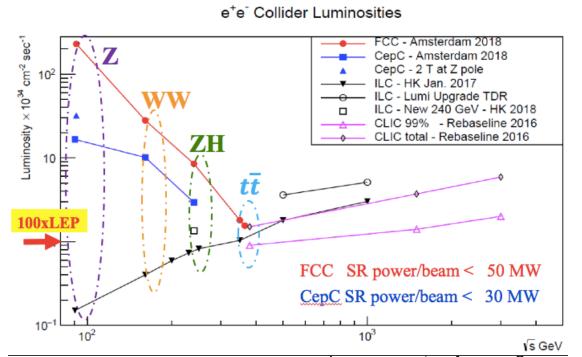


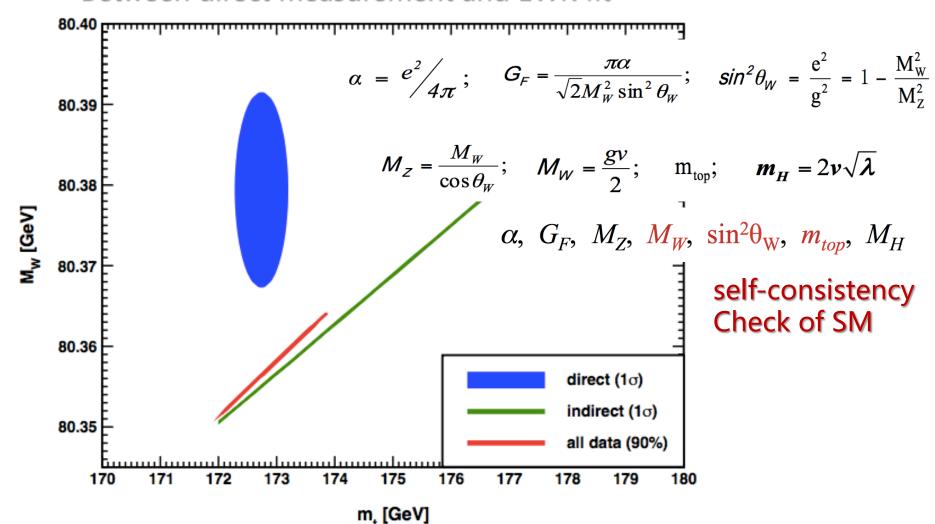
Z pole Physics overview


Zhijun Liang

Institute of High Energy Physics, Chinese Academy of Science

CLHCP 2019, Dalian

Introduction to CEPC


- CEPC is Higgs Factory (E_{cms}=240GeV, 10⁶ Higgs)
- CEPC is Z factory($E_{cms} \sim 91$ GeV), electroweak precision physics at Z pole.
 - baseline L=1.6 X 10³⁵ cm⁻²s⁻¹ , Solenoid =3T, 3X10¹¹ Z boson, two years
 - L= $3.2 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$, Solenoid = 2T, $6\times 10^{11} \text{ Z boson}$
- WW threshold scan runs (~160GeV) are also expected.
 - One year, Total luminosity 2.6 ab⁻¹ 14M WW events

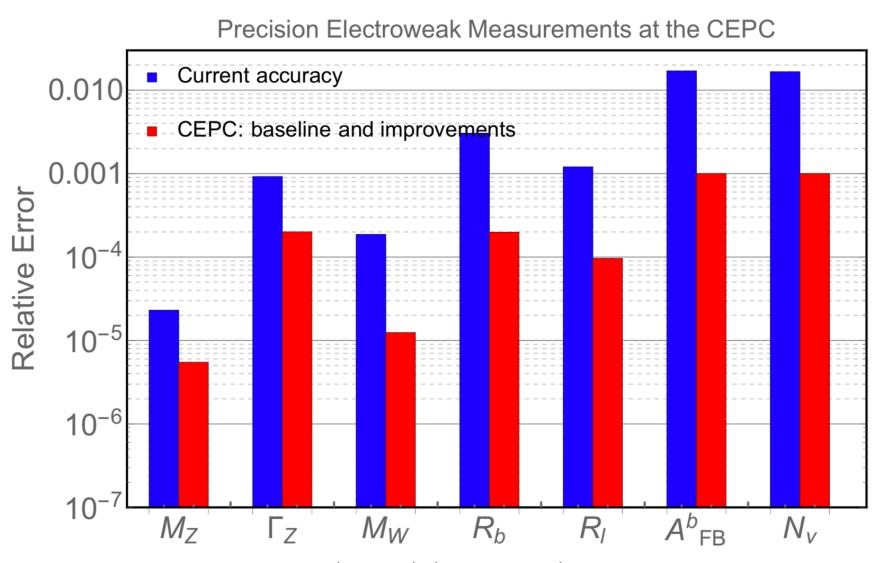
From F. Bedeschi

Status of electroweak global fit

- Small tension in top mass and W mass.(2σ)
 - Between direct measurement and EWK fit

Motivation for CEPC electroweak physics

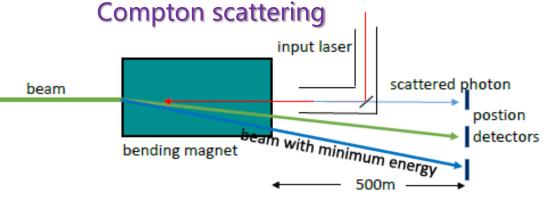
- need more precision in
 - W mass, Top mass and weak mixing angle

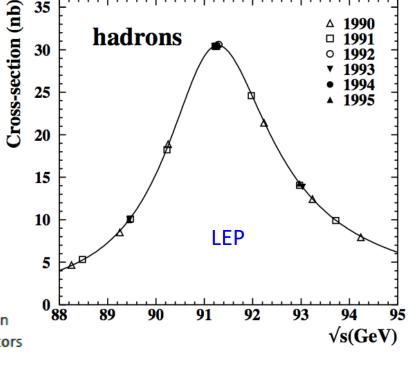

From PDG2018

CEPC can provide more precise measurement

Fundamental constant	δx/x	measurements
$\alpha = 1/137.035999139 (31)$	1×10 ⁻¹⁰	$\mathbf{e}^{\pm}oldsymbol{g}_2$
$G_F = 1.1663787 (6) \times 10^{-5} \text{GeV}^{-2}$	1×10 ⁻⁶	μ [±] lifetime
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10 ⁻⁵	LEP
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10 ⁻⁴	LEP/Tevatron/LHC
$sin^2\theta_W = 0.23152 \pm 0.00014$	6×10 ⁻⁴	LEP/SLD
$m_{top} = 172.74 \pm 0.46 \text{GeV}$	3×10 ⁻³	Tevatron/LHC
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10 ⁻³	LHC

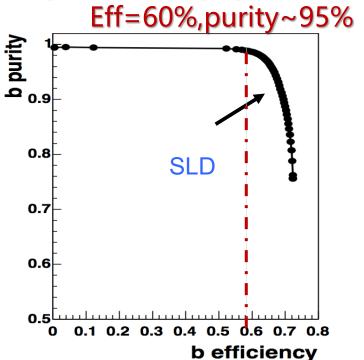
Prospect of CEPC EWK physics

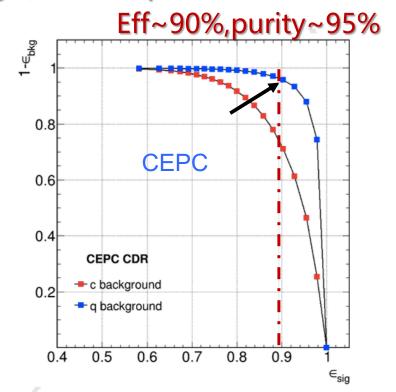

Expect to have 1~2 order of magnitude better than current precision



Z mass measurement

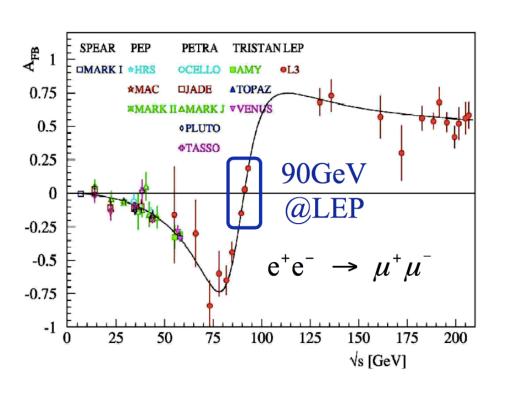
- LEP precision: 91.1876±0.0021 GeV
- CEPC goal : 0.5 MeV (CDR) → 0.1MeV (TDR)
 - Beam energy uncertainty is major systematics
 - Resonant depolarization approach by LEP → <0.1MeV
 - Compton scattering → <0.3 MeV

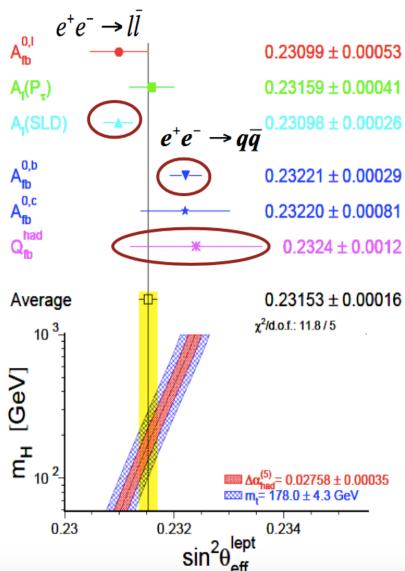

Z pole (91GeV)	WW (160GeV)	ZH (240GeV)
0.1MeV	0.5 MeV	NA
0.3MeV	0.6MeV	1.0 MeV
	(91GeV) 0.1MeV	(91GeV) (160GeV) 0.1MeV



$\frac{\Gamma(\mathrm{Z} o \mathrm{b}\bar{\mathrm{b}})}{\Gamma(\mathrm{Z} o \mathrm{had})}$ Branching ratio (Rb)

- LEP measurement 0.21594 ±0.00066
 - Syst error : ~0.2%
- CEPC
 - Expected Syst error (0.02%)
 - hemisphere tag correlations depends on b tagging efficiency
 - Expect 20~30% higher B tagging efficiency than SLD
 - Theory uncertainty (gluon splitting ..): need input from theorists

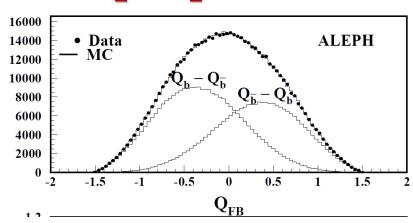



 $C_b = \frac{\varepsilon_{2jet-tagged}}{(\varepsilon_{1jet-tagged})^2}$

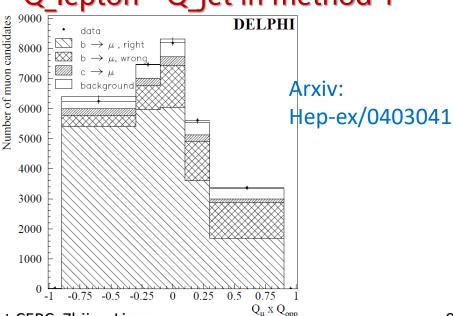
More details in Bo Li's talk

Weak mixing angle

- Some tension between SLD and LEP results (~3σ)
 - Remain a puzzle for ~10 years

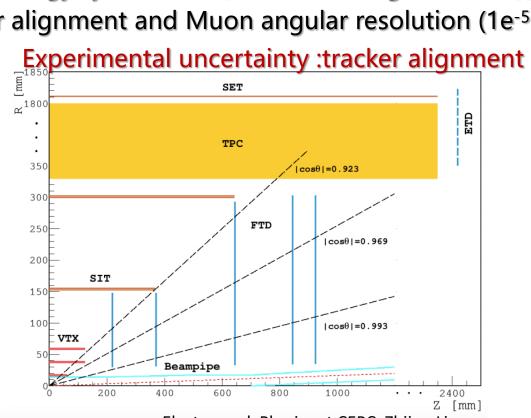

Backward-forward asymmetry

 $A_{FB}^{0,b}$


- LEP measurement: 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay
 CEPC precision 0.1%, LEP precision ~2% (stat dominated)
 - Main systematics is B hadron decay branching ratio
 - Method 2: jet charge method, Inclusive b jet (LEP precision 1.2%)
 - use event Thrust to define the forward and background
 - Use jet charge difference (Q_F Q_B)

Arxiv:Hep-ex/0107033

Q_F - Q_B in method 2


Q_lepton - Q_jet in method 1

Backward-forward asymmetry in Z->µµ

- LEP measurement: 0.0169 +-0.00130
- CEPC expected: +-0.00002

- CEPC has potential to improve it by a factor of 50.
 - Acceptance systematics (larger detector coverage, smaller syst.)
- Major systematics (absolute value.)
 - Beam energy systematics (1e-5, assuming 100keV E_{beam} unc.)
 - Tracker alignment and Muon angular resolution (1e-5 level)

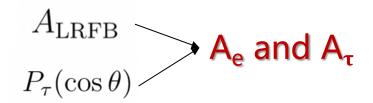
A_e and A_τ: tau polarization

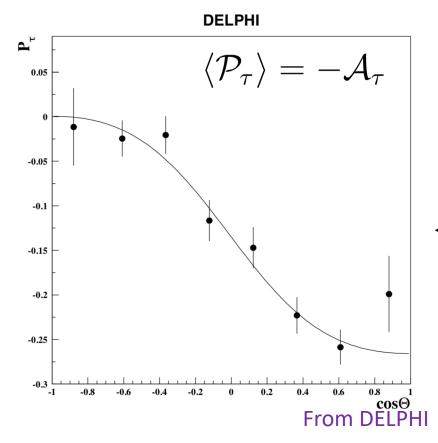
$$A_{\text{FB}} = \frac{\sigma_{\text{F}} - \sigma_{\text{B}}}{\sigma_{\text{F}} + \sigma_{\text{B}}}$$

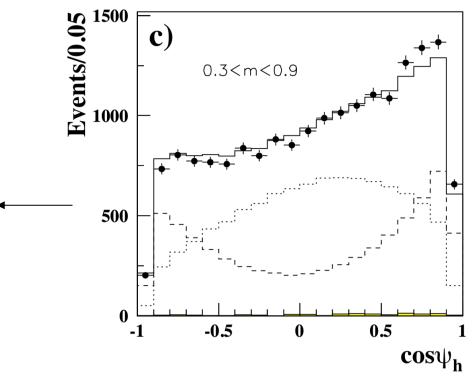
$$A_{\text{LR}} = \frac{\sigma_{\text{L}} - \sigma_{\text{R}}}{\sigma_{\text{L}} + \sigma_{\text{R}}} \frac{1}{\langle |\mathcal{P}_{\text{e}}| \rangle}$$

$$A_{\text{LRFB}} = \frac{(\sigma_{\text{F}} - \sigma_{\text{B}})_{\text{L}} - (\sigma_{\text{F}} - \sigma_{\text{B}})_{\text{R}}}{(\sigma_{\text{F}} + \sigma_{\text{B}})_{\text{L}} + (\sigma_{\text{F}} + \sigma_{\text{B}})_{\text{R}}} \frac{1}{\langle |\mathcal{P}_{\text{e}}| \rangle}$$

Weak mixing angle


extracted from A_e and A_τ using tau polarization: more precise

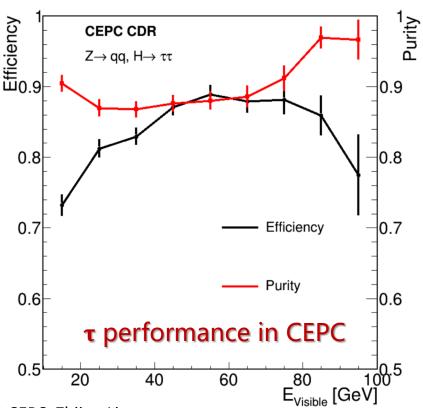

	Number	Purity of	
τ decay mode	selected decays	the samples $(\%)$	
$ au o e \nu_e \nu_ au$	18434	89.4 ± 0.1	$A_{ m LRFB}$ \searrow
$ au o \mu u_{\mu} u_{ au}$	19811	94.3 ± 0.1	\rightarrow A _a and A _b
$ au o \pi/K u_ au$	14850	73.2 ± 0.1	$P_{\tau}(\cos\theta)$
$ au o ho u_{ au}$	26548	75.4 ± 0.1	
$ au o a_1 u_{ au}$	9446	53.2 ± 0.2	


A_e and A_τ in $Z \rightarrow \tau\tau$

Tau polarization can be measured through its decay product

$$P_{\tau}(\cos \theta) = -\frac{\mathcal{A}_{\tau}(1 + \cos^2 \theta) + \mathcal{A}_{e}(2\cos \theta)}{(1 + \cos^2 \theta) + \frac{4}{3}\mathcal{A}_{fb}(2\cos \theta)}$$

Eur. Phys. J. C 14, 585-611 (2000)


A_e and A_τ in $Z \rightarrow \tau \tau$: systematics

Current precision

- $-A_e: 0.1515 \pm 0.0019 (PDG)$
- $-A_{\tau}$: 0.143 \pm 0.004 (PDG)
- CEPC expected :
 - A_{τ} Key systematics is from EM scale, and τ identification
 - A_e limited by statistics

Relative unc.	current PDG Precision	CEPC Precision
A_{τ}	2.8X10 ⁻²	5X10 ⁻⁴
A_{e}	1.3X10 ⁻²	3X10 ⁻⁴

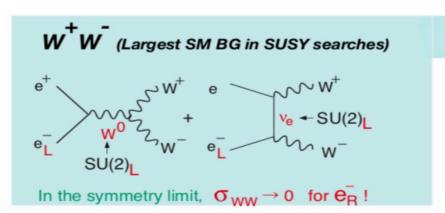
CEPC can improve this by a factor of 50

Prospect of CEPC EWK physics

Expect to have 1~2 order of magnitude better than current precision

Observable	LEP precision	CEPC precision	CEPC runs	CEPC $\int \mathcal{L}dt$
m_Z	2.1 MeV	0.5 MeV	Z pole	$8~\mathrm{ab^{-1}}$
Γ_Z	2.3 MeV	0.5 MeV	Z pole	$8~{ m ab}^{-1}$
$A_{FB}^{0,b}$	0.0016	0.0001	Z pole	$8~{ m ab}^{-1}$
$A_{FB}^{0,\mu}$	0.0013	0.00005	Z pole	$8~{ m ab}^{-1}$
$A_{FB}^{0,e}$	0.0025	0.00008	Z pole	$8~{ m ab}^{-1}$
$\sin^2 heta_W^{ ext{eff}}$	0.00016	0.00001	Z pole	$8~{ m ab}^{-1}$
R_b^0	0.00066	0.00004	Z pole	$8~{ m ab}^{-1}$
R_{μ}^0	0.025	0.002	Z pole	$8~{ m ab}^{-1}$
m_W^{\cdot}	33 MeV	1 MeV	WW threshold	$2.6~{\rm ab}^{-1}$
m_W	33 MeV	2–3 MeV	ZH run	$5.6 {\rm \ ab^{-1}}$
$N_{ u}$	1.7%	0.05%	ZH run	5.6 ab^{-1}

Beam polarization for Z pole?

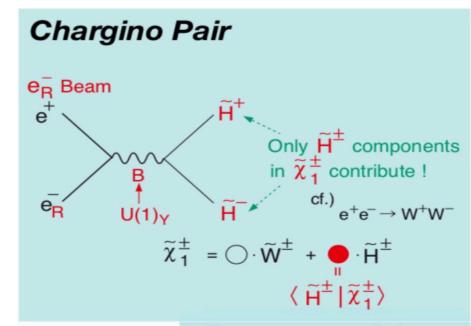

- What is Polarized beam collision ?
 - Usually mean longitudinal polarized beam for physics

Туре	Polarized beam collision	Beam energy measurement
Polarized Type	Longitudinal polarized	Transverse polarized
Fraction of polarization	>30% (50%)	5~10% is enough

Туре	Longitudinal polarized e-	Longitudinal polarized e+	Transverse polarized Beam
CEPC	To be discussed	To be discussed	Yes (Z,WW)
Fcc-ee	No	NO	Yes (Z,WW)
ILC	yes	yes	-

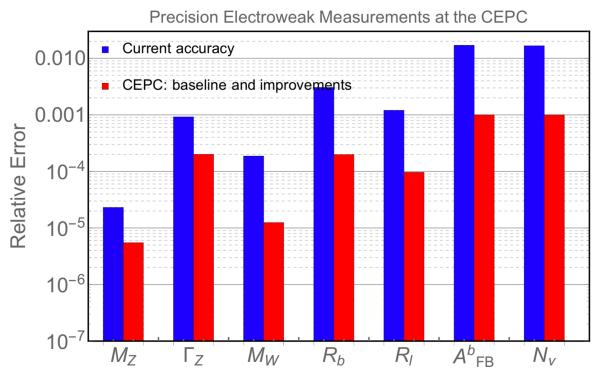
Polarized beam collision: motivation

Any other physics case for polarized beam collision in CEPC?



BG Suppression

From ILC



Decomposition

Signal Enhancement

Summary

- Potential of electroweak measurement at CEPC
 - 1~2 order of magnitude better than current precision
 - Two years at Z pole: 3(6) X10¹¹ Z boson
 - One year WW runs: 10^8 WW pairs (10^7 WW @ 160GeV)
- Polarized beam collision is under study

Electroweak global fit

Review of the key electroweak constant

Fundamental constant	δx/x	measurements	
$\alpha = 1/137.035999139 (31)$	1×10 ⁻¹⁰	$\mathrm{e}^{\pm}g_2$	Z pole
$G_F = 1.1663787 (6) \times 10^{-5} \text{ GeV}^{-2}$	1×10 ⁻⁶	μ^{\pm} lifetime	
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10 ⁻⁵	LEP	Z pole
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10 ⁻⁴	LEP/Tevatron/LHC	WW run
$sin^2\theta_W = 0.23152 \pm 0.00014$	6×10 ⁻⁴	LEP/SLD	Z pole
$m_{top} = 172.74 \pm 0.46 \text{ GeV}$	3×10 ⁻³	Tevatron/LHC	
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10 ⁻³	LHC	ZH runs

From PDG2018

CEPC EWK input to ECFA

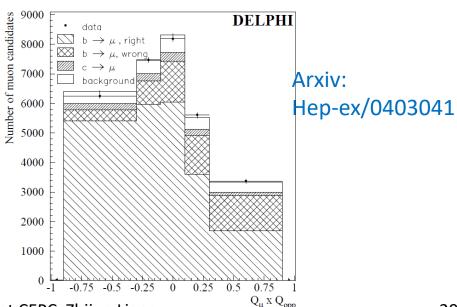
	Γ_Z	$\sigma_{ m had}$		$A_e \ (\tau \ \mathrm{pol})$	A_{τ} (τ pol)
CEPC	$0.5\mathrm{MeV}$	$0.005\mathrm{nb}$		0.0003	0.0005
FCC-ee	$0.1\mathrm{MeV}$	$0.005\mathrm{nb}$		_	_
	R_e	R_{μ}	$R_{ au}$	R_b	R_c
CEPC	0.0003	0.0001	0.0002	0.0002	0.001
FCC-ee	0.0003	0.00005	0.0001	0.0003	0.0015
	$A_{ m FB}^{0,e}$	$A_{ m FB}^{0,\mu}$	$A_{ m FB}^{0, au}$	$A_{ m FB}^{0,b}$	$A_{ m FB}^{0,c}$
CEPC	0.005	0.003	0.005	0.001	0.003
FCC-ee	_	_	_	_	_
(fitted)	A_e	A_{μ}	$A_{ au}$	A_b	A_c
CEPC	0.0003	0.003	0.0005	0.001	0.003
FCC-ee	0.0001	0.00015	0.0003	0.003	0.008

Table 1: A comparison of CEPC and FCC-ee Z-pole inputs. All uncertainties are relative (normalized to 1) except for Γ_Z and $\sigma_{\rm had}$. " τ pol" denotes that the measurement is from τ polarization in $Z \to \tau^+\tau^-$. The 5 fitted asymmetry observables $(A_{e,\mu,\tau,b,c})$ are derived from a simutanous fit of all the $A_{\rm FB}^0$ observables as well as the A_e and A_τ from τ polarization.

doing check on systematics (tracker alignment ...)

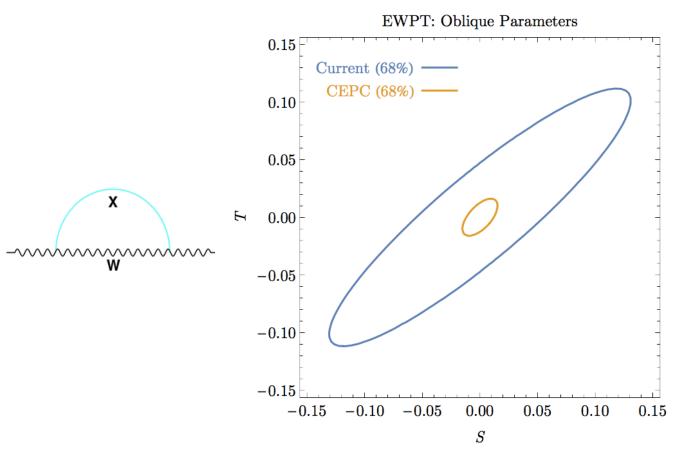
Discrepancy Due to statistics

Backward-forward asymmetry


- LEP measurement: 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Select one lepton from b/c decay, and one b jets
 - Select lepton charge (Q_lepton) and jet charge (Q_jet)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Select two b jets, use event thrust to define the forward
 - Use jet charge difference (Q F Q B)

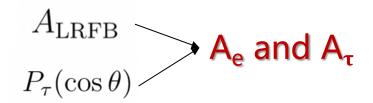
Arxiv:Hep-ex/0107033

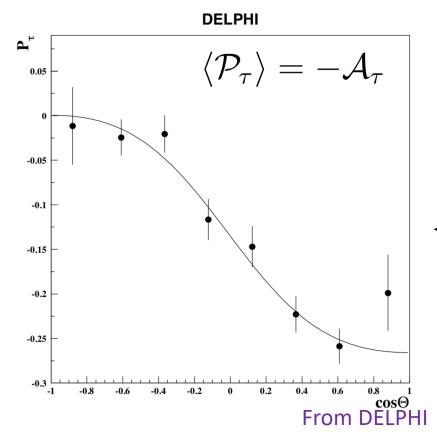
Q_F - Q_B in method 2

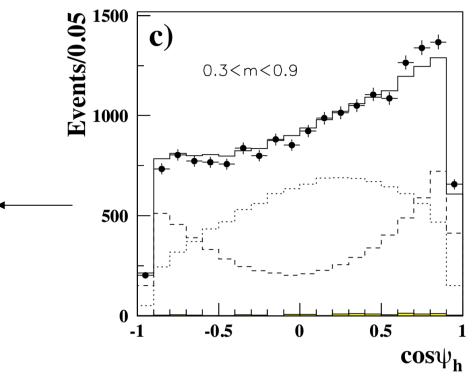

16000
14000
12000
10000
8000
4000
2000
0
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Q_{lepton} - Q_{jet} in method 1

Constraint to new physics

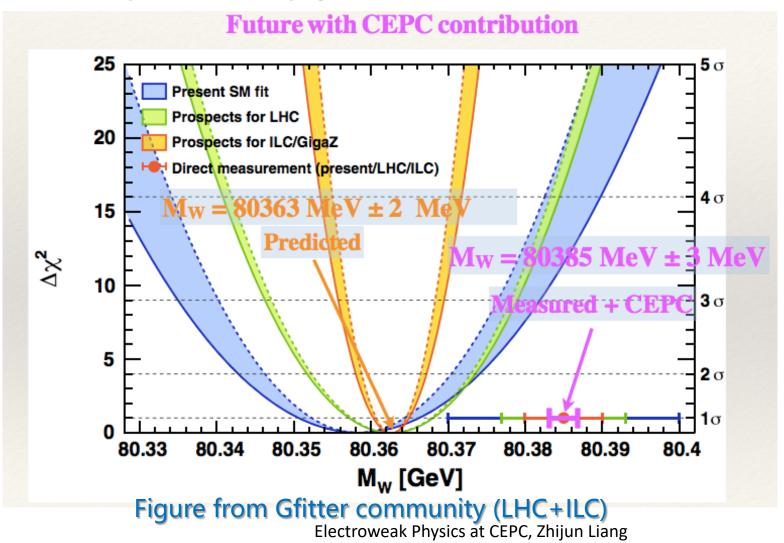

- Oblique parameter S,T,U: corrections to gauge-boson self-energies
 - S and T (U) correspond to dimension 6 (8) operators
- Constraint to Oblique parameter from CEPC EWK measurements will be about one order of magnitude better than current constraint.




A_e and A_τ in $Z \rightarrow \tau\tau$

Tau polarization can be measured through its decay product

$$P_{\tau}(\cos \theta) = -\frac{\mathcal{A}_{\tau}(1 + \cos^2 \theta) + \mathcal{A}_{e}(2\cos \theta)}{(1 + \cos^2 \theta) + \frac{4}{3}\mathcal{A}_{fb}(2\cos \theta)}$$



Eur. Phys. J. C 14, 585-611 (2000)

Prospect of CEPC W mass measurement

- CEPC can improve current precision of W mass by one order of magnitude
 - A possible BSM physics can be discovered in the future

Motivation for CEPC electroweak physics

- need more precision in
 - W mass, Top mass and weak mixing angle
- CEPC can provide more precise measurement for
 - W/Z and Higgs mass and weak mixing angle

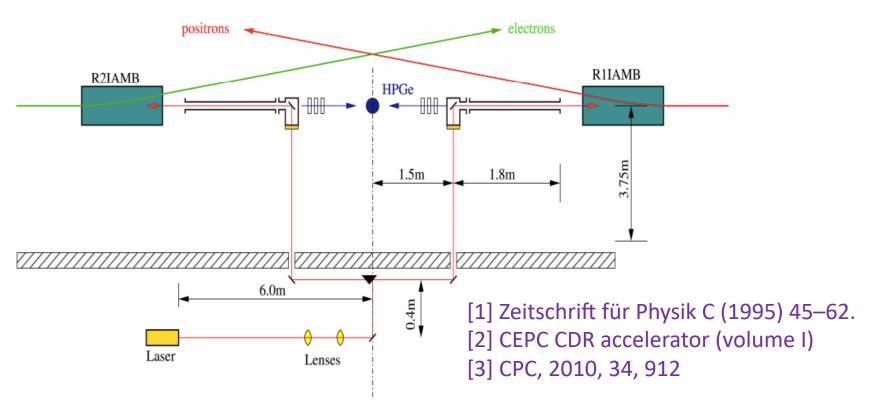
Fundamental constant	δx/x	measurements
$\alpha = 1/137.035999139 (31)$ From PDG201	1×10 ⁻¹⁰	$\mathrm{e}^{\pm}g_2$
$G_F = 1.1663787 (6) \times 10^{-5} \text{GeV}^{-2}$	1×10 ⁻⁶	μ [±] lifetime
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10 ⁻⁵	LEP
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10 ⁻⁴	LEP/Tevatron/LHC
$sin^2\theta_W = \ 0.23152 \pm 0.00014$	6×10 ⁻⁴	LEP/SLD
$m_{top} = 172.74 \pm 0.46 \text{GeV}$	3×10 ⁻³	Tevatron/LHC
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10 ⁻³	LHC

Number of neutrino generation (N_v)

LEP measurement :

$$e^+e^- o
u \bar{
u} \gamma$$

- Indirect measurement (Z line shape method): 2.984+-0.008
- Direct measurement (neutrino counting method): 2.92+-0.05
 - Stat error (1.7%), Syst error (1.4%)

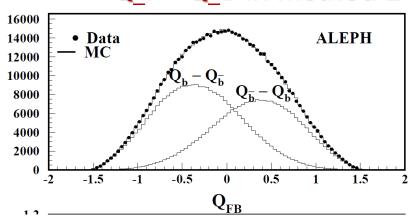

CEPC measurement :

- Focus on direct measurement, Expected Syst error (~0.2%)
- High granularity in calorimeter can help photon identification
- Detector readout time and Pileup is also key for Missing energy
- Need focus on improving photon energy scale in next step

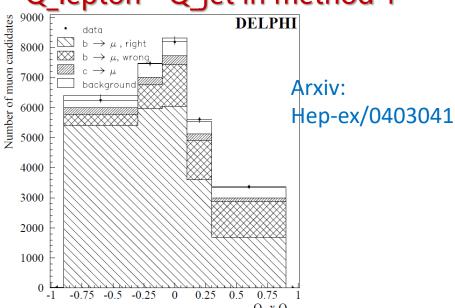
Systematics source	LEP	CEPC
Photon trigger and Identification efficiency	~0.5%	<0.1%
Calorimeter energy scale	0.3~0.5%	<0.2%

Z mass measurement (2)

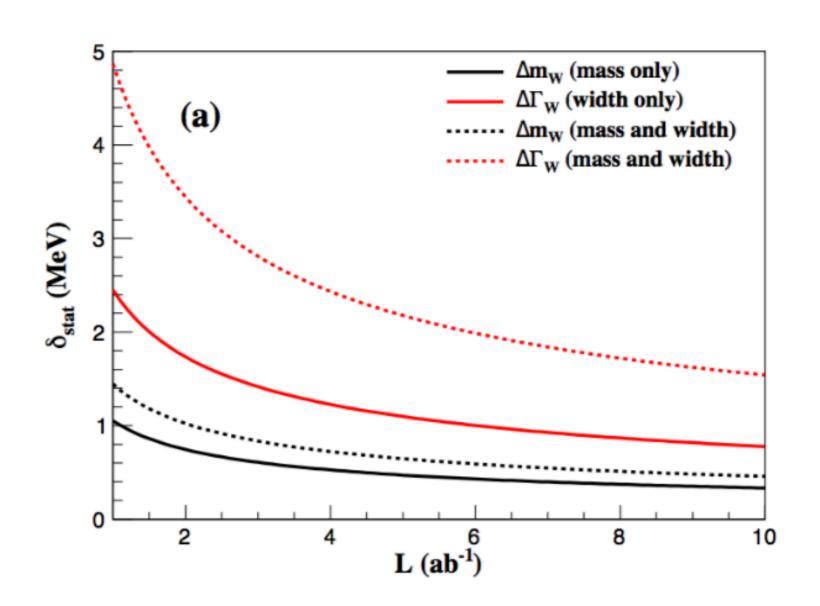
- Syst uncertainty: ~0.5 MeV
 - Beam energy uncertainty is major systematics
 - Resonant depolarization approach by LEP [1] → <0.5MeV
 - Compton backscattering [2]
 → 2~5 MeV
 - Radiation return , $Z(\mu\mu)\gamma$ events → 2~5MeV


Backward-forward asymmetry

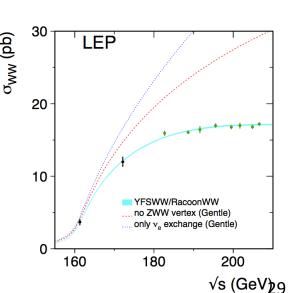
 $A_{FB}^{0,b}$


- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay
 CEPC precision 0.1%, LEP precision ~2% (stat dominated)
 - Main systematics is B hadron decay branching ratio
 - Method 2: jet charge method, Inclusive b jet (LEP precision 1.2%)
 - use event Thrust to define the forward and background
 - Use jet charge difference (Q_F Q_B)

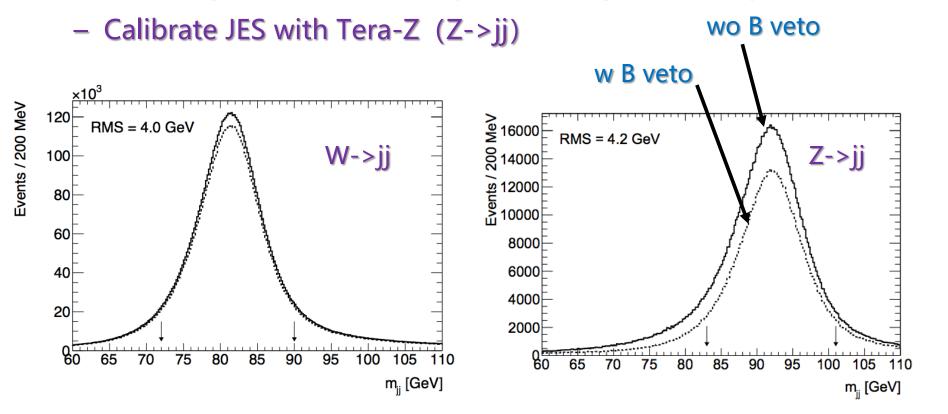
Arxiv:Hep-ex/0107033


Q_F - Q_B in method 2

Q_lepton - Q_jet in method 1


Statistics error on W mass Vs Luminosity

WW threshold scan – CEPC plan


- WW threshold scan running proposal
 - Assuming one year data taking in WW threshold (2.6 ab⁻¹)
 - Four energy scan points:
 - 157.5, 161.5, 162.5(W mass, W width measurements)
 - 172.0 GeV (α_{QCD} (m_W) measurement, Br (W->had), CKM |Vcs|)
 - 14M WW events in total
 - 400 times larger than LEP2 comparing WW runs

E _{cm} (GeV)	Lumiosity (ab ⁻¹)	Cross section (pb)	Number of WW pairs (M)	(qa)
157.5	0.5	1.25	0.6	5
161.5	0.2	3.89	0.8	
162.5	1.3	5.02	6.5	
172.0	0.5	12.2	6.1	

W mass direct measurement

- Reconstruct di-jet mass from WW->lvqq events in ZH run
 - Not affect by beam energy uncertainty
 - Major systematics is Jet energy scale (JES) uncertainty (2~3 MeV)
 - Mainly from Jet flavor composition and jet flavor response

