t t experimental talk more like introduction to non-experts focusing on experimental aspects

All results in this presentation comes from several collaborations but RY is responsible for this presentation

Ryo Yonamine

CEPC Workshop 2019 @ IHEP 18-20 Nov. 2019

Introduction

Where we are : Standard Model

Gravity Strong Weak ElectroMagnetic Standard **Evolution of Universe** Model works well for this region 6 Energy scale \rightarrow GUT? ToE?

Phase transition of vacuum Electroweak Symmetry Breaking

SM does NOT explain why it happened

Physics beyond the SM (BSM) will do !

Revealing EWSB —> BSM

EWSB : Mass generation mechanism EWSB $\rightarrow \langle H \rangle \neq 0$

Heaviest particle should maximally be involved in EWSB Target : top quark

Examples :

- EWSB and top quark mass can be generated in Composite Higgs models,

- Top Yukawa coupling dynamically can cause EWSB in SUSY theories.

https://arxiv.org/pdf/hep-ph/9807349.pdf

4

Top quark can be a good probe for EWSB

What makes top quark special (attractive)?

Its large mass!

(heavy enough to decay into b + W)

- 1. Heaviest particle (~173GeV) in SM. Why so heavy compared to the other fermions?
- 2. Top quark mass affects theoretical predictions. Large loop contributions to many precision measurements e.g. EW fit, vacuum stability, BSM predictions etc. (see next 2 pages)

3. Top quark decays before hadronization.

Allows precise comparisons between measurements and theoretical predictions (Large width of top quark acts as an infrared cutoff which allows to use pQCD).

Why top mass $(+\alpha_s)$? : Vacuum stability

Top mass and α_s probes BSM

7

Importance of precision measurements

Historical discovery :

Higgs, Yukawa couplings of 3rd generation fermions ... and many validations of SM processes ! No new colored particles reported yet

BSM energy is likely very high = Deviation from SM is likely very small!

Reconstruction aspects

Top event signature and reconstruction

Event signature:

- 2 b-jets + 2 isolated leptons
- 2 b-jets + 2 q-jets + 1 isolated lepton

10

- 2 b-jets + 4 q-jets

Typical reconstruction procedure :

- 1. Find isolated leptons (0, 1, 2)
- 2. Overlay removal
- 3. Jet clustering (2, 4, 6 jets)
- 4. b-tagging (2 b-jets)
- 5. Kinematic constraints (e.g. m_w , $\cos \theta_{bw}$)

Typical efficiency of t \overline{t} event selection :

50~80% (depends on purity) Assignment of 6 fermions to t / \overline{t} is more challenging!

Key : Jet clustering and b-tagging

Jet Clustering

Reconstructing multi jet events will be the key for many analyses

Fundamental difficulty :

of quarks in final state ≠ # of jets (there can be hard gluons emitted)

Lesson learned :

- Improving jet-clustering = better paring (mini-jets into colour-singlets)
- Non negligible beam background at high energies even for e+e- colliders

https://agenda.linearcollider.org/event/7760/contributions/40910/attachments/32767/49845/JetRec_ILD2018.pdf https://agenda.linearcollider.org/event/8217/contributions/44662/ Pei-Zhu Lai @ LCWS2019, CEPC2019

https://agenda.linearcollider.org/event/8217/contributions/44665/

Keep improving for best physics performance!

Flavor tagging : b-tagging, c-tagging

Basic idea to identify signatures of heavy flavour hadrons :

- vertex info. (position, mass, # of tracks)
- Isolated leptons

Splitting secondary vertex tracks (e.g. by jet mis-clustering) would easily lose the signatures, especially in "jetty" environment.

-> LCFIPlus searches secondary vertices first, then construct jets keeping the vertex structures. https://arxiv.org/pdf/1506.08371.pdf

Flavour tagging with DNN

13

Front runners of Top factories

Top factories : Hadron colliders

Tevatron at Fermilab

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.74.2626 https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.74.2632

• LHC at CERN

p p TeV collider (\sqrt{s} ~2 TeV)

- Discovery of top quark
- Discovery of single top production
- Measurement of the properties
- Established analyses base etc.

- pp TeV collider (√s~14 TeV)
- Discovery of Higgs boson
- Discovery of Yukawa couplings of 3rd generation fermions
- Precise top mass measurements
- Validating SM with many processes in details etc.

Providing precise measurements of topstrong and EW charged current interactions

A lot of measurements validate SM!

Future e+e- colliders

can also produce top quarks (e.g. e+e- --> tt)

Why e+e- colliders for top?

- The shape of t \overline{t} threshold cross section is strongly dependent on top mass
- Center-of-mass energy : adjustable! Theoretically preferable (see next page)

Scanning t t bound state cross sections around its threshold (~350 GeV) (see page 19, 20)

2. Possible to produce top pairs via Z/γ with low QCD background Electroweak neutral current interactions of top quark are to be precisely investigated (see page 19, 20)

*Single top production at e+e- collider : Single and pair production will be comparable at \sqrt{s} TeV (CLIC)

t t bound state characteristic

Currently it would be 20% due to QCD calculation $(N^{3}LO \text{ order} + NNLL \text{ resummation})$

Several top quark properties can be extracted by scanning tt bound state cross section

Extraction of top mass (1)

Precise theoretical understanding of the shape of the tt threshold -->

Scanning the cross section at several energy point will be a good test

Total uncertainty on MS mass ~ 50 MeV

Understanding relation between MS mass and jet invariant mass would help LHC analyses.

 See also
 Kacper Nowak @ LCWS2019
 https://agenda.linearcollider.org/event/8217/contributions/44657/

 Marcel Vos et. al @ LCWS2019
 https://agenda.linearcollider.org/event/8217/contributions/44591/

Extraction of top mass (2)

https://agenda.linearcollider.org/event/8217/contributions/44591/

center-of-mass energy of tt system

Anomalous EW couplings

21

e+e- top factories will elucidate top quark properties!

Prospects for top EW coupling

22

Top quark Effective Field Theory

To generalize anomalous coupling description : https://arxiv.org/pdf/1807.02121.pdfParameterize deviations from SM in t \overline{t} production using dimension-six effective operators

Flavour-Changing Neutral Current

Forbidden at tree level, highly suppressed at loop level (GIM mechanism) in SM

24

Top decay width from momentum

25

- α_s also changes P_{top} distribution

Basic concept has been confirmed with toy MC data.

Probably templates used in study were to be generated depending not only on |P| but also polar angle that was missing. —> Future work

(W—>qq case is more challenging because of necessity of identification of W^+/W^-)

Obtain F_i by fitting with templates of ω (n^{sim}) :

$$\chi^{2}(F_{i}) = \sum_{ibin=1}^{nbin} \left(\frac{n_{ibin}^{Test} - n_{ibin}^{sim}(F_{i})}{\sqrt{n_{ibin}^{Test}}} \right)^{2}$$

10~40% better performance to method by σ_{tt} and A_{FB} has been confirmed.

* Multi parameter fit/Hadronic mode —> Future study

Extra : bbar production (σ bb, AFB)

- b_L quark is the same SU(2)×U(1) partner of top quark
- b_R quark is not well constrained by earlier experiments

- Top quark plays a key role to unravel EWSB
- Jet Clustering and Flavour tagging are crucial for top physics
- ♦ What are to be done at future e+e- colliders :
 - tt threshold scan $\rightarrow m_t$, Γ_t , α_s , y_t
 - Searches anomalous coupling, especially with neutral current :
 - FCNC processes
 - anomalous ttZ/ γ coupling
 - and bottom quark (and other fermion) pairs, too

and should be more!

Mass scheme

MS mass	Theoretically preferable at high energies :
	Frequently used in precision calculation
	Poor convergence at tt threshold region
Pole mass	Defined as pole of quark propagators
	Numerically close to generator mass parameter

PS massStable at tt threshold regionCan rigorously be converted to MS mass with high precision

Compactly summerized in https://arxiv.org/pdf/1807.02441.pdf

Boosted top tagging

https://arxiv.org/pdf/1807.02441.pdf

Small separation between individual top decay products Top tagger algorithm --> searching substructures

