DUNE DAQ Plans

Pengfei Ding On behalf of the DUNE DAQ Consortium

November 19th, 2019

Fermi National Accelerator Laboratory

The Deep Underground Neutrino Experiment

- The DUNE experiment: 1000+ collaborators; 170+ institutions; 30+ countries.
- Physics goals:
 - Search for leptonic CP violation;
 - Search for nucleon decay;
 - Observation of supernova neutrino bursts.
- World's most intense neutrino beam
 - Beam of v_{μ} (or \bar{v}_{μ}) produced by 1.0-1.2 MW of proton beam in 60-120GeV from PIP-II at the start of DUNE operations; planned upgrade of 2.4 MW by 2030.
 - Baseline is 1300 km from Fermilab to SURF.

DUNE Far Detector

- Four 10-kt (fiducial) liquid argon time projection chamber (LArTPC) modules;
- Provides excellent 3D imaging and energy measurement capability;

Integrated photon readout, provides t₀ of each event, crucial for spatial

reconstruction.

Verification Service Wires

Usquid Argon TPC

Cathode Plane

Verification Service Wires

Verifica

1300 km from Fermilab
~1.5 km underground
Four 10kt LArTPC modules

17.5 kt total mass

charges drift horizontally;

500 V/cm drift field;

3.5m drift length, 180 kV cathode

150 Anode Plane Assemblies (APAs)

2.3 X 6.0 m2

384,000 readout wires

12.0m drift length, 600 kV cathode

Charges drift vertically, amplified in gas phase by large electron multipliers (LEMs);

80 Charge Readout Planes (CRPs)

• 3.0 X 3.0 m2

ProtoDUNE @ CERN

- Single-Phase
 - 6.9 m X 7.2 m X 6 m
 - Used in ICARUS, ArgoNEUT/LArIAT, MicroBooNE

- Dual-Phase
 - 6 m X 6 m X 6 m
 - Being pioneered by the WA105 collaboration
 - If demonstrated, potential advantages over single-phase approach

DAQ

DUNE Requirements

- (some) Requirements
 - Time resolution $< 1\mu s$, goal is < 100 ns;
 - 1.5 TB/s DAQ readout throughput of TPC and photon detector per single phase module;
 - 10 Gb/s average storage throughput per single phase detector; 100 Gb/s peak;
 - Readout window: 10 μs (calibration) to 100 s (SNB), typically 5.4 ms for triggered interactions;
 - Ability to record 30-100s worth of raw data for a Supernova trigger;
 - High trigger efficiency (99% for particles > 100 MeV; 95% in the first 10s of SNBs)
 - Goals is to get zero dead time (small deadtime would not compromise physics sensitivity);

11/19/2019

Supernova

- Despite being extremely rare, the Supernova data are the dominant constraint on the DAQ;
- Signature: lots of low energy deposits in the detector;
- Full Raw Data must be stored for preferably 100 s
- Each SN ~0.5 PB (normal event ~6 GB)
 - 12 triggers expected per year

 Supernova trigger causes data to be sent from NVMe SSD storage and streamed out "slowly" to the data storage.

11/19/2019

DUNE SP-LArTPC events at SURF

- Ionized charges drift slowly in LAr, ~2.5 ms for single-phase,
 ~7.5 ms for dual-phase;
- Leads to:
 - Lower event rate ~100 Hz.
 - With 2MHz digitalization → large event size ~6.22 GB per event (single-phase);

		L0/L1 accept rate
ATLAS/CMS	1-2 MB	100 kHz
LHCb	∼50 kB	1 MHz
ProtoDUNE-SP	~250 MB	25 - 100Hz
DUNE	~6.22 GB	~100Hz

Big challenges on dataflow management, storage etc.

DAQ Overview

- Upstream DAQ Front-end readout and software based lowlevel trigger primitives;
- Data Selection Higher level trigger processing;
- **3. Back-end** dataflow management;
- 4. Timing and synchronization;
- 5. Control, configuration and monitoring.

- System with capability of being partitioned:
 - Operate in independent DAQ instances;
 - Each executed across all DAQ subsystems;
 - Each uniquely mapped among subsystem components.

11/19/2019

DAQ Overview

Upstream DAQ (I)

Upstream DAQ (III)

- FELIX @ ProtoDUNE-SP
 - PCIe card on host computer;
 - P-to-p link throughput;
 - 10 links to host memory over 1 FELIX card;
 - HW aided data compression using Intel's QAT;
 - Full I/O over InfiniBand for ProtoDUNE;
 - Need much less network I/O for DUNE;
 - Need longer and higher throughput storage for DUNE.

Upstream DAQ (III)

- Co-processor
 - Companion processor board for FELIX;
 - 24 FMC+ links to FELIX;
 - Quad-core ARM CortexTM-A53
 MOCoreTM up to 1.5GHz
 - 16GB DDR4 memory;
 - 512GB M.2 NVMe on board storage;
 - Acts as processing and buffering module.

Xilinx Zynq: XCZU15EG

Data Selection

- Hierarchical, online, software-based system;
- Trigger primitives on a per channel basis;
- Trigger candidate on a per APA basis;
- Trigger command on a per module basis.

Back-End DAQ (I)

- Back-end DAQ is all about moving data across the network...
- Based on Fermilab's artdaq framework;
- artdaq has been used by many experiments:
 - NOvA Test Beam, Mu2e (tracker, calorimeter, CRV), many LArTPC experiments (SBND, ICARUS etc).
- artdaq features:
 - Provide a common framework for back-end DAQ;
 - Highly configurable, can deal with wide range of event rate and size;
 - Experiments put most efforts on implementing hardware specific code in the form of BoradReader;
 - artdaq provides subsequent data transfer, event building, file I/O etc;
 - also provides system configuration, process management, monitoring etc.

Back-end DAQ (II)

Plan to have process awareness to tolerate dead event builders

Timing System (I)

Dual Phase: White Rabbit implementation of the IEEE1588-2008 timing distribution standard.

Single Phase: improved version of a custom protocol/solution

developed for ProtoDUNE-SP;

- Plan for DUNE Far Detectors:
 - Redundant antennae in both mine shafts;
 - Two GPS receivers;
 - Can hot-swap between the two;
 - Signals provided to Front-end electronics and calibration systems;
 - In each module, components synchronized to a common 62.5MHz clock (1ns precision);
 - Also acts at the clock source for the computing.

Testing @ protoDUNE

- Data taking with beam from Sep. 21st, 2018;
- Saw events in data from charged beams of $\mu \pi K p e$.

Timeline

- Start of 1st FD detector module installation in August 2024;
- Start of 2nd FD detector module installation in August 2025;
- 1st FD detector module in operations in July 2026.
- ProtoDUNE-SP-II installation in March 2021;
- ProtoDUNE-DP-II installation in March 2022.

Planned project timeline

July 2017

Groundbreaking for LBNF/DUNE

Sept. 2018

First ProtoDUNE detector online at CERN

2019

Begin main cavern excavation in South Dakota

August 2024

Begin installing the first DUNE detector

July 2026

Fermilab's high-energy neutrino beam to South Dakota operational with two DUNE detectors online

Thanks for listening!