GEANT Status of the CEPC LumiCal Design

CEPC workshop 2019

Outline

Bhabha cross section

boost by beam crossing, favoring small beam pipe r< 30 mRad $\rightarrow \sigma$ (Bhabha) > ~ 50 nb

Beampipe material

smearing to electron impact position shower leakage to Tracker

- GEANT with a cone shape beam pipe
- Perspectives for 10⁻⁴ luminosity precision

Bhlumi calculations

 KeyWgt=0 → event wgt=1, for simulation count events in chosen condition scale to Xcru

BARE1 X section: (of the bhlumi paper) Th1 < θ_1 ' and θ_2 ' < Th2, s'> 0.5s Use BARE1 as reference

BHLUMI theoretical precision

Bhlumi 4.04 writeup: CERN-TH/96-158

cds.cern.ch/record/310621/files/th-96-158.ps.gz http://cern.ch/~jadach/public/Bhlumi-linux-4.04-export_2002.11.05.tar.gz

Theory uncertainty: 0.25% was **BHLUMI 2**, reported in CPC package paper *http://inspirehep.net/record/321226?ln=en* **The latest BHLUMI 4 report is pushed to < 0.1%**

Reproduce BHLUMI to 0.1%

Bhlumi-linux-4.04-export_2002.11.05.tar.gz Compiled by g77 on SL6, **demo.f** produce numbers as in paper CERN-TH/96-158

BARE1: .024<θ₁', θ₂' <.058 s'>0.5s

0.1000	0.202) <u>)</u> ^^	000						1
Xsec_BARE1	. =	169.1	19520)371	Nanob					
error	=	0.0	57481	.969	Nanob					
Xsec_CALO2	2 =	136.2	21881	.786	Nanob					
error	=	0.0	54151	.939	Nanob					
uon@honui(134.~/	work /k	<u>blum</u>	i/ce	anc /der	⊅ ∩ m				

LEP workshop95 on Bhabha established 0.1% precision

Hep-ph/9602393

demo.f
1000000 ev
KeyPia=0, KeyZet=0
CMS = 92.3 GeV
Xsec_BARE1 = 162.5295 Nanob.
Error = 0.2061 Nanob.

Table 14: Monte Carlo results for the symmetric Wide-Wide ES's BARE1, for matrix elements beyond first order. Z exchange, up-down interference switched off. The center of mass energy is $\sqrt{s} = 92.3$ GeV. Not available x

Hep-ph/9602393

	z_{min}	BHLUMI [nb]
	.100	$166.892\pm.006$
	.300	$165.374\pm.006$
	.500	$162.530\pm.006$
	.700	$155.668\pm.006$
	.900	$137.342\pm.006$
Ī		

CEPC beam crossing

CEPC double Ring

Beam crossing 33 mRad

Bhabha back-to-back boosted by CEPC beam crossing

- Bhlumi electrons boosted for the 33 beam crossing by ~16.5 mRad to +x direction
- Compared for Bhabha selection conditions

Bhabha X sec. vs Lab z-axis round pipe

- CMS generated th1=10 mRad → boosted +16.5mRad, +X are low angle Bhabha
- Assuming beam pipe is LAB z-axis centered, radius = 30 mRad (r=30mm @z=1m) at x=+30 mm, Bhabha electrons are of θ=13.5 mRad
- → Off beam pipe, detect: one electron (262 nb) / both electrons (74.6 nb) = 3.51
 → Hori. cut +/- 30mm : one electron (51.8 nb) / both electrons (49.1 nb) = 1.05

9

Bhabha X sec. vs Lab beampipe options

Round beam pipe, 30 mRad

CMS 10 ~ 80 mRad		LAB ONE	electron	LAB both electrons			
BARE1		off beampipe	off beampipe	off beampipe	off beampipe		
		full phi coverage	cut off ±30mm	full phi coverage	cut off ±30mm		
Nevents	457232	102535	20277	29194	19216		
Xsec (nb)	1168.3	262.0	51.81	74.60	49.10		

-2 mRad radius -> 20% increase in X section

Round beam pipe, 28 mRad

CMS 10 ~ 80 mRad		LAB ONE	electron	LAB both electrons			
BARE1		off beampipe	off beampipe	off beampipe	off beampipe		
		full phi coverage	cut off ±30mm	full phi covearge	cut off ±30mm		
Nevents	457232	135842	24236	34847	23010		
Xsec (nb)	1168.3	347.1	61.93	89.04	58.80		
			-		10		

Bhabha measurement

Beam crossing: 33 mRad

 → Boost off ring center (+x axis)
 → offset 16.5 mRad maximum (electrons on x-z plane) LOW angle Bhabha on x-axis one electron detected (+x side) the other electron (-x side) is boosted into beampipe NOT counted for Lumi meassurment

boosted outward

Geant implementing new GEOM

1.Be 的長度為 140mm, Z 範圍-70~70mm。↩

2. 以 IP 單側為例, Be 管及銅管的尺寸見下表及附圖, 真空管相對於 IP 對稱。↩

材料₽	Z範圉 (mm) ↩	內直徑(mm)↩	備註↩	₽
Be₽	<mark>0~70</mark> ₽	28₽	直管₽	₽
Copper+ ²	70~200↩	28₽	直管₽	Þ
	200~500₽	28~35₽ ⁰	錐管₽	₽
	500~700₽	35~39₽	錐管,包含波紋管₽	₽

Geant implementing new GEOM

New Beam pipe is LAB centered Ji Quan 東流管内方案

内铍管厚度: 0.50 外皮管厚度: 0.35 内外铍管间隙: 0.5 冷却介质:1号电火花油 说明:

1.Ø25和Ø31是根据白莎的计算,最小束流管孔径

- 2.亮度探测器对应管道为单层管(无冷却),
 - 需根据计算确定184mm 是否满足温度要求

50 GeV electron shower on beam pipe

GEANT simulation precision is 0.1 MeV

Beam pipe cone is at Theta= 130 mRad Material is a Delta function at 130 mRad

shoot at 130 mrad, hit the cone pipe

shoot at 134 mrad

50 GeV electron shower vs. angle

Shower leakage, electron <130 mRad

Negligible to Tracking volume

- Material ~ 2X0 (<3X0), energetic secondaries go forward toward Q-pole
- Large angle secodaries are very low energy (<100 MeV), mostly stopped by the 5 mm Fe TUBE

Shower on Z<970 5mm Fe TUBE

Monitor particle hits before/after 5mm Fe support TUBE (r = 123.4 mm)

50 GeV electrons at theta = 95 mRad edge of LumiCal

Shower by Flange and 2 layers of W (1X0) Secondaries are behind Z>700mm

18

Shower on Z>970 5mm Fe CONE

Particle hits before/after 5mm Fe CONE around LumiCal (r = 123.4 mm @Z=970mm)

50 GeV electrons at theta = 95 mRad

Shower by Flange and 2 layers of W (1X0)

Secondaries are behind Z>700mm, continue on at LummiCal

19

5 mm Fe blocking shower to Tracker

GEANT particle momentum unit/precision is 0.1 MeV

5mm Fe surrounding beampipe, 2X0 Tunsteng in Flange, 20X0 in LumiCal

- > 130 mRad → shower caused by 5mm Fe layer
- @130 mRad
- → max shower by beampipe, Q-pole edge
- ~100 mRad → LumiCal leakage

< 100 mRad Tungsten, 2X0 in Flange has little leakage effect</p>

Electron theta	Hits/event z<970mm	Hits/event z>970mm	
Angle mRad	outside/inside TUBE	outside/inside CONE	
785 mRad	28.3 / 12.0	.029 / .003	\leftarrow Support Tube shower
140 mRad	75.8 / 10.8	32.7 / 16.4	
135 mRad	80.7 / 9.92	61.0 / 27.9	
132 mRad	539 / 1162	123 / 122	← Beampipe shower
130 mRad	<mark>444</mark> / 1138	<mark>129</mark> / 227	
127 mRad	6.40 / 27.5	<mark>836</mark> / 1605	\leftarrow Q-pole edge shower
124 mRad	1.88 / 4.84	9.46 / 28.4	
118 mRad	.023 / .183	.036 / .153	
110 mRad	.022 / .172	.031 / .139	
95 mRad	31.2 / 88.8	<mark>391</mark> / 787	← LumiCal edge shower
80 mRad	25.1 / 72.4	81.6 / 159	20

Precision on electron impact position

Attach behind beam-pipe cone face, whatever material thickness, Impact position is not effected by multiple scattering/fragmentation → Better than 1 µm

50 GeV electron, shoot LumCal center theta = 40 mRad

Precision on electron impact position

Compare Flange having 2X0 Tungsten layers OR NOT

GEANT particles of 0.1MeV Hits of shower secondaries on Si layers

Spatial Resolution of piled up hits (50 GeV electrons)

Front 2 Si-layers of Q-pole LumiCal Pileup of shower ~1 mm resolution

Three Si layers at Z>670 mm NO Tungsten layers Spatial resolution ~ 20 μm

 $1^{st}\,Si$ layer behinde Beampipe cone $% 2^{st}\,Si$ at Z=515 mm Hit deviation better than 1 μm

Spatial Resolution of piled up hits (50 GeV electrons)

Front 2 Si-layers of Q-pole LumiCal Pileup of shower ~1 mm resolution

Three Si layers at Z>670 mm Two 1X0 Tungsten layers behind Si wafers Spatial resolution ~ 20 μm

 $1^{st}\,Si$ layer behinde Beampipe cone $% 1^{st}\,Si$ at Z=515 mm Hit deviation better than 1 μm

Detector segmentation for LumiCal

Implementing a Si-W LumiCal in CEPC detector simulation Geometry – hollow circle shape detector

Detector segmentation for LumiCal

Vary the pixel size in Theta, LumiCal at Z=500 mm

Geometry of current LumiCal, (4 layers tracker + calorimeter)

Electron with flat distribution was used in this report

Detector segmentation for LumiCal

Pixel size in Theta, 75μm (=.15mRad) LumiCal at Z=500 mm LumiCal only, Electron hit position resolution ~ 2 mRad

Angular difference at acceptance edge, 75 μm, case – 2.1 LumiCal

10.5[°] (183 mRad) (4 tracker, 75um) $\theta_{RECO} - \theta_{true}$

Detector options

Electron impact position to 1 μm precision

- fine pitch Si-wafer stick to beampipe
- covering theta range ~30 to 100 mRad

Electron/Photon ID

Multiple Si-wafers to ID photon tracks
 being originated from IP or beampipe fragmentation

Beam electron ID

- LumiCal segmentation for 1 mm resolution
- Could be Crystal + SiPM

Combined detection of Bhabha,

- Detect Bhabha single-electron Bhabha at low +X region
- Build far-forward tagger on –X electron (behind Q-pole) to trigger Back-to-Back Bhabha