CEPC Physics and Performance

Jianbei Liu

State Key Laboratory of Particle Detection and Electronics, China University of Science and Technology of China

> The 2019 International CEPC Workshop IHEP, Beijing November 18, 2019

Outline

- CEPC physics program
- CEPC detector performance
 - Reconstruction and identification
- CEPC physics studies
 - Higgs physics
 - Electroweak physics
- Summary

The CEPC Project

- A 100-km Circular Electron-Positron Collider (CEPC) serving as a factory of bosons: Higgs, Z, W
- Upgradable to a 100-TeV proton-proton collider

CEPC Physics Program

	NY Z	e e ⁺ Z	f	e ⁺ Z ^z	'∕৵ᡣᢇ ^{ᡣ₩+} ᡣ᠆
Operation mode	\sqrt{s} (GeV)	L per IP (10 ³⁴ cm ⁻² s ⁻¹)	Years	Total $\int L$ (ab ⁻¹ , 2 IPs)	Event yields
H	240	3	7	5.6	1×10^{6}
Z	91.2	32 (*)	2	16	7×10^{11}
W^+W^-	158–172	10	1	2.6	2×10^7 (†)

- The centerpiece: precise measurement of the Higgs boson properties (width, couplings, mass ...)
- Precision tests of SM: electroweak physics, flavor physics, QCD
- Searching for exotic or rare decays of H, Z, B and tau

CEPC Detector Concepts

Baseline : PFA approach (derived from ILD) Silicon + TPC (B=3T) + PFA-ECAL&HCAL + Muon

Alternative : IDEA (low magnetic field)

Silicon + Drift Chamber (B=2T)

+ Dual-readout calorimeter + Muon

Calorimeter outside the coil

Another tracking option with full-silicon

Simulation and Reconstruction

New effort: A software framework based on Gaudi, CSS etc. is under development !

Generators (Whizard & Pythia)
Data format & management (LCIO & Marlin)
Simulation (MokkaC)
Digitization
Tracking
PFA (Arbor)
Single Particle Physics Objects Finder (LICH)
Composed object finder (Coral)
Tau finder
Jet Clustering (FastJet)
Jet Flavor Tagging (LCFIPLus)
Event Display (Druid)
General Analysis Framework (FSClasser)
Fast Simulation (Delphes + FSClasser)

Baseline Detector Performance

- Tracking
- Lepton identification
- Photon reconstruction
- Tau identification
- Kaon identification
- Boson mass resolution
- Jet reconstruction
- Jet flavor tagging

Tracking

• Highly efficient for pT > 200 MeV

• Good momentum resolution fulfilling the $H \rightarrow \mu\mu$ requirement

Lepton Identification

- A BDT-based lepton ID algorithm (LICH) has been developed exploiting the high granularity of the PFA calorimetry system (combined with dE/dx from the tracker).
- Lepton ID efficiency > 99.5% with mis-ID rate ~ 1% for p>2GeV

Lepton ID inside Jets

- Performance of lepton ID in good/poor calorimeter clusters, in comparison with that extrapolated from the isolated case.
- An indicator of clustering performance.

Photon Reconstruction

- Capability of separating close-by photons heavily depends on ECAL cell-size.
- Baseline detector can separate the two photons from a pi0 decay with energy up to 30 GeV.

- Photon energy resolution is improved when correcting for ECAL geometry defects.
- A Higgs mass resolution of 2.2% is achieved in $H \rightarrow \gamma \gamma$.

π^0 reconstruction

 Better performance in endcaps due to larger spatial separation between the two decay photons

Tau Identification

- Double-cone based Tau ID algorithm has been developed for TAURUS (Tau ReconstrUction toolS)
- An efficiency*purity higher than 70% is achieved for qqττ and qqτv events

Kaon Identification

- > 2- σ pi/K separation could be achieved for p<20GeV, resulting in Kaon efficiency/purity of 91%/94% in the inclusive Z sample.
- Important for flavor physics. Could also help with jet flavor and charge determination.

Jets

- Jets are important physics objects: 97% of HZ events have jets in their final states
 - 1/3 of them have only 2 jets
 - The rest have > 2 jets
- For 2-jet events
 - the 2 jets came from either Z or H decays
 - Can calculate the visible mass of the 2-jet system without reconstructing jets → boson mass
 - Then use boson mass resolution to quantify performance of 2-jet event reconstruction.
- Jet clustering/reconstruction is required for >2-jet events and differential measurements.

Boson Mass Resolution (BMR)

 With a standard cleaning procedure implemented to control the effect of ISR photon, neutrinos generated in Higgs decays, and detector acceptance, a consistent BMR is observed for different Higgs di-jet decay channels: ~3.7%

Fig. 8. (color online) Distributions of the reconstructed total visible invariant mass for $H \rightarrow bb, cc, gg$ events after event cleaning and fitted by Gaussian functions. The resolutions (sigma/mean) of the fitted results are 3.63% (*bb*), 3.82% (*cc*), and 3.75% (*gg*).

BMR Requirement

- BMR<4% is required from those benchmark processes
- CPEC baseline detector can meet this requirement
- BMR (free of jet clustering): an important performance parameter and a good figure of merit for optimizing detector(calorimeters) design

Breaking Down BMR

- Sources contributing to BMR include imperfect response of sub-detectors and various confusions in PFA
- A fast simulation was set up to quantify contributions from the individual sources
 - The leading factor: charged hadron fragments
 - And sub-leading: HCAL energy resolution

Suggesting the directions for detector and algorithm optimization

Jet Reconstruction

- Jets are reconstructed with the exclusive ee kt algorithm.
- Jet energy resolution shows jet flavour dependence.
- Energy resolution of light-flavour jets could reach 3% at ~ 100 GeV in a central barrel region.

- Jet clustering and pairing is the dominant factor confusing multi-jet events. It's critical to develop better algorithms.
- kinematic fit with extra constraints could also help.

One Example

Jet Flavor Tagging

- LCFI+ package used
- Typical Performance at Z pole
 - B-tagging: eff/purity = 80%/90%
 - C-tagging: eff/purity = 60%/60%

- Jet flavor tagging performance was evaluated for varied vertex detector parameters
 - Reducing inner radius is much more significant than pushing up position resolution.

Higgs Production @ 240 GeV

Process	Cross section	Events in 5.6 ab^{-1}				
Higgs boson production, cross section in fb						
$e^+e^- \rightarrow ZH$	196.2	$1.10 imes 10^6$				
$e^+e^- \rightarrow \nu_e \bar{\nu}_e H$	6.19	$3.47 imes 10^4$				
$e^+e^- \rightarrow e^+e^-H$	0.28	1.57×10^3				
Total	203.7	1.14×10^{6}				

 A large clean sample of Higgs events (S/B ~1: 500-1000) at 240 GeV allows for a precision Higgs physics program.

CDR Results and Improvements

			CEPC CDR 0.000 CEPC Simulation CEPC 2019
(240GeV,5.6ab ⁻¹)	CDR	2019.09	$ \begin{array}{c} 5.6 \text{ ab}^{\circ}, 240 \text{ GeV} \\ \bullet \\ 12000 \\ \bullet $
$\sigma(ZH)$	0.50%		■ ²⁰⁰ 8000 • CEPC Simulation = 150
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%		6000
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%		
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%		$ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 120 & 125 & 130 & 135 & 140 \\ M_{\mu\mu}^{\text{Recui}}[\text{GeV}] & 105 & 110 & 115 & 120 & 125 & 130 \\ M_{\mu\mu}^{\text{Recui}}[\text{GeV}] & M_{\mu\mu}^{\text{Recui}}[\text{GeV}] & M_{\mu\mu}^{\text{Recui}}[\text{GeV}] \end{bmatrix} $
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%		
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%		O 16000 S+B Fit
$\sigma(ZH) * Br(H \rightarrow \tau\tau)$	0.8%		
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	6.8%	5.4%	8000 · CEPC Simulation
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	12%	4000 Signal 400 Signal 400
$\sigma(vvH) * Br(H \rightarrow bb)$	3.0%		2000 60 70 80 90 100 110 120 115 120 125 130 135 140
$Br_{upper}(H \rightarrow inv.)$	0.41%	0.2%	M _{bb} ^{Hecol} [GeV] M _{γγ} [GeV]
$\sigma(ZH) * Br(H \to Z\gamma)$	16%		$\Gamma_H \propto \frac{\Gamma(H \to ZZ^*)}{DD(H \to ZZ^*)} \propto \frac{\sigma(ZH)}{DD(H \to ZZ^*)} \to 5.1\% \longrightarrow 2.8\%$
Width	2.8%		$BR(H \to ZZ^*) BR(H \to ZZ^*)$ $\Gamma(H \to bb) \qquad \sigma(\mu \bar{\nu} H \to \mu \bar{\nu} b\bar{b})$
Mass	5.9 MeV		$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{\text{BR}(H \to bb)} \propto \frac{b(bbH \to bb)}{\text{BR}(H \to b\bar{b}) \cdot \text{BR}(H \to WW^{*})} \to 3.0\%$

Published: $\sigma(ZH)$:1601.05352, bb/cc/gg: 1905.12903, $\tau\tau$:1903.12327.....

Higgs Couplings

Using updated HL-LHC projections in comparison and combination

CEPC: ~1% precision (κ_Z ~0.16%)

Probing BSM with Precision

$$\mathcal{L}_{ ext{EFT}} = \mathcal{L}_{ ext{SM}} + \sum_{i} rac{oldsymbol{c}_{i}^{(6)}}{\Lambda^2} \mathcal{O}_{i}^{(6)} + \sum_{j} rac{oldsymbol{c}_{j}^{(8)}}{\Lambda^4} \mathcal{O}_{j}^{(8)} + \cdots$$

EFT fit with Higgs basis

A New Global Analysis Approach

See the talk by P. Shen and G. Li at the CEPC physics workshop, 2019/07/01-05, PKU, for more details .

Electroweak Physics

Operation mode	\sqrt{s} (GeV)	L per IP (10 ³⁴ cm ⁻² s ⁻¹)	Years	Total $\int L$ (ab ⁻¹ , 2 IPs)	Event yields
Z	91.2	32 (*)	2	16	7×10^{11}
W^+W^-	158–172	10	1	2.6	2×10^7 (†)

A big challenge for beam energy calibration !

Post-CDR Planning

- Dedicated workshops and discussions for planning for TDR
- More to happen in the coming IAS HKUST HEP event

To deliver full CEPC physics white papers by the end of 2020

- Fully explore detector performance in physics analysis
- Enhance existing analyses by use of full kinematic information, MAV techniques, global analysis approaches.
- Go deeper and wider: differential measurement, Spin/CP, BSM search

Summary

- CEPC is a factory of H/Z/W bosons with a clean environment
- Huge physics potential
 Higgs, EWK, Flavor, QCD
- Performance of the baseline detector can meet requirements from Higgs physics program
- A lot of work ahead from CDR to TDR
 - full exploitation of CEPC physics potential, particularly on flavor and QCD
 - Detector optimization based on performance studies, especially for Z pole operation
 - Software, reconstruction/Identification, analysis tools

Acknowledgements

- I am so grateful to Manqi Ruan, Yaquan Fang, Gang Li, K. Zhang, Z. Liu, Zhigang Wu, Zhijun Liang, Dan Yu, Peizhu Lai, Yuqiao Shen for providing me with results and slides.
- Special thanks to Manqi, Yaquan and Gang for very helpful discussions.

• Back up