Jet Response at CEPC

Pei-Zhu Lai

NCU (Taiwan)
On the behalf of the CEPC Collaboration
(pei-zhu.lai@cern.ch)

CEPC Workshop, IHEP, Beijing China Nov 18 - Nov 20, 2019

- **■** Higgs production at CEPC
- ZH decay mode
- Jets at the Higgs Signal
- Jet performance in different physic benchmark
- **■** Summary

Higgs Production at CEPC

Process	Cross section(fb)	Events in 5.6 ab ⁻¹
e+e-→ZH	196.2	1.10×10^{6}
$e^+e^- \rightarrow \nu_e \overline{\nu}_e H$	6.19	3.47×10^4
e+e-→e+e-H	0.28	1.57×10^{3}
Total	203.7	1.14 × 10 ⁶

S:B=1:(100 ~ 1000)

■ Observables: Higgs mass, CP, $\sigma(ZH)$, event rate ($\sigma(ZH, vvH)*Br(H\to X)$), Diff. distributions \to Absolute Higgs width, branching ratio, couplings

Jets at the Higgs Signal

- Up to 97% of Higgstrahlung(ZH) final-states associates to jets.
- Jets are also critical for many EW precision measurements.

Jets at the Higgs Signal

- 67% (4 + 6 jets) needs dedicated color-singlet identification: grouping the hadronic final-state particles into color-singlets (Z, W, H, γ^*). Can be done via jet clustering and pairing.
- Jet clustering is also essential for differential & EW precision measurements (e.g. TGCs).

	I	BMI: Massive bosons
# of jets	Probability	1/3 of ZH events invariant mass resolutions
0	2.44%	 Major SM Higgs decay modes. 1 color singlet could be identified.
2	29.73%	(Single Z or Higgs boson)
4	59.58%	2/3 of ZH events
6	8.23%	 Dominance statistic of ZH→qqqq. Major uncertainty is on wrong jet
		pairing. (Potential huge impact)

- 67% (4 + 6 jets) needs dedicated color-singlet identification: grouping the hadronic final-state particles into color-singlets (Z, W, H, γ^*). Can be done via jet clustering and pairing.
- Jet clustering is also essential for differential & EW precision measurements (e.g. TGCs).

	ı	BMI: Massive bosons
# of jets	Probability	1/3 of ZH events invariant mass resoluti
0	2.44%	 Major SM Higgs decay modes. 1 color singlet could be identified.
2	29.73%	(Single Z or Higgs boson)
4	59.58%	2/3 of ZH events
6	8.23%	 Dominance statistic of ZH→qqqq. Major uncertainty is on wrong jet
		pairing. (Potential huge impact)

BM2: # of jet identification & thrust clustering method for z jets

- 67% (4 + 6 jets) needs dedicated color-singlet identification: grouping the hadronic final-state particles into color-singlets (Z, W, H, γ^*). Can be done via jet clustering and pairing.
- Jet clustering is also essential for differential & EW precision measurements (e.g. TGCs).

# of jets	Probability	BMI: Massive bosons 1/3 of ZH events invariant mass resolution
0	2.44%	 Major SM Higgs decay modes. 1 color singlet could be identified.
2	29.73%	(Single Z or Higgs boson)
4	59.58%	2/3 of ZH events
6	8.23%	 Dominance statistic of ZH→qqqq. Major uncertainty is on wrong jet
		pairing. (Potential huge impact)

BM2: # of jet identification & thrust clustering method for 2 jets

- 67% (4 + 6 jets) needs dedicated color-singlet identification: grouping the hadronic final-state particles into color-singlets (Z, W, H, γ^*). Can be done via jet clustering and pairing.
- Jet clustering is also essential for differential & EW precision measurements (e.g. TGCs).

BM3: Jet energy and angular differential response

lutions

;	# of jets	Probability	BMI: Massive bosons 1/3 of ZH events invariant mass resolutions
	0	2.44%	 Major SM Higgs decay modes. 1 color singlet could be identified.
	2	29.73%	(Single Z or Higgs boson)
	4	59.58%	2/3 of ZH events
	6	8.23%	 Dominance statistic o(ZH→qqqq.) Major uncertainty is on wrong jet
			pairing. (Potential huge impact)

BM2: # of jet identification & thrust clustering method for 2 jets

BM4: Separation of WW, ZZ, and ZH decay to 9999 final state

- 67% (4 + 6 jets) needs dedicated color-singlet identification: grouping the hadronic final-state particles into color-singlets (Z, W, H, γ^*). Can be done via jet clustering and pairing.
- Jet clustering is also essential for differential & EW precision measurements (e.g. TGCs).

BM3: Jet energy and angular differential response

# of jets	Probability	BMI: Massive bosons 1/3 of ZH events invariant mass resolutions
0	2.44%	 Major SM Higgs decay modes. 1 color singlet could be identified.
2	29.73%	(Single Z or Higgs boson)
4	59.58%	2/3 of ZH events
6	8.23%	 Dominance statistic of ZH→qqqq. Major uncertainty is on wrong jet
		pairing. (Potential huge impact)

- 67% (4 + 6 jets) needs dedicated color-singlet identification: grouping the hadronic final-state particles into color-singlets (Z, W, H, γ^*). Can be done via jet clustering and pairing.
- Jet clustering is also essential for differential & EW precision measurements (e.g. TGCs).

BM1: Massive Boson Mass Resolution

- W-, Z-, and Higgs-boson masses in dijet final state can be well separated at CEPC.
- After cleaned, Z- and W-boson could be separated $\approx 2\sigma$, and the Higgs Boson Mass Resolution = 3.8% achieving the CEPC baseline.

Cleaned: Select the light flavor jet event with low energy ISR, low energy neutrino inside jet, and within $|\cos\theta| < 0.85$. Pei-Zhu Lai (NCU, Taiwan) 11 CEPC WS 2019

BM1: Massive Boson Mass Resolution

■ The separation of Z- and W-boson at CEPC is much better than ATLAS as it should be, because of the better collision environment and detector response.

#	f of jet	s Probability	1/3 of ZH events
	0	2.44%	 Major SM Higgs decay modes. 1 color singlet could be identified.
	2	29.73%	(Single Z or Higgs boson)
	4	59.58%	2/3 of ZH events
	6	8.23%	 Dominance statistic of ZH→qqqq. Major uncertainty is on wrong jet
			pairing. (Potential huge impact)

BM2: # of jet identification & thrust clustering method for 2 jets

- 67% (4 + 6 jets) needs dedicated color-singlet identification: grouping the hadronic final-state particles into color-singlets (Z, W, H, γ^*). Can be done via jet clustering and pairing.
- Jet clustering is also essential for differential & EW precision measurements (e.g. TGCs).

CEP BM2: Preliminary Number of Jet Identification

Yong-Feng Zhu

Samples:
e+e-→qq̄ (2 jets)
ZZ→qq̄qq̄ (4 jets)
W+W-→qq̄qq̄ (4 jets)
ZH→qq̄qq̄ (4 jets)
ZH→qq̄qqq (6 jets)

Signal	Efficiency × Purity
2 jets	88.4%
6 jets	1.8%

20 event-shape variables are combined with the multi-variate analysis (MVA) to separate 2, 4, and 6 jets final-states.

BM2: Thrust Jet Clustering Method

$$T \equiv max \frac{\sum_{j}^{N} |P_{j} \cdot n_{T}|}{\sum_{i}^{N} |P_{i}|}$$

P_i or P_j: Momentum of each particle n_T: A unit vector $(\sin\theta \times \cos\phi, \sin\theta \times \sin\phi, \cos\theta)$

- "Thrust" is one kind of event-shape variables.
- The nature clustering idea for the single boson decays to di-jet events, thrust.
 - 1. First, boost the system back to the rest frame.
 - 2. Find out a vector in the θ and ϕ phase space which has highest momentum efflux.
 - 3. System is divided into 2 hemispheres with the thrust axis, and each identified as a jets. (Only applicable to 2 jets final-state)

# of jets	Probability	1/3 of ZH events
0	2.44%	 Major SM Higgs decay modes. 1 color singlet could be identified (Single Z or Higgs boson)
2	29.73%	
4	59.58%	2/3 of ZH events
6	8.23%	 Dominance statistic of ZH→qqqqq Major uncertainty is on wrong jet
		pairing. (Potential huge impact)

- 67% (4 + 6 jets) needs dedicated color-singlet identification: grouping the hadronic final-state particles into color-singlets (Z, W, H, γ^*). Can be done via jet clustering and pairing.
- Jet clustering is also essential for differential & EW precision measurements (e.g. TGCs).

BM3: Jet energy and angular differential response

Objects Definition

- MCP represents initial parton of MC quark. The original state of quark.
- GenJets are grouped all MC particles except neutrinos with $c\tau > 1$ cm through exclusive ee-kt jet clustering algorithm.
- RecoJets are grouped with the particle flow objects by <u>exclusive ee-kt</u> jet clustering algorithm.

Quantify the Performance

Double-sided crystal ball(DBCB) function is used to extract energy and angular resolution and scale.

Jet Energy Scale (JES) Jet Energy Resolution (JER)

Relative difference: $\frac{E_{\text{Re}co} - E_{\text{Re}co}}{E}$

Jet Angular Scale (JAS) Jet Angular Resolution (JAR)

Difference:
$$\theta_{\text{Re}co} - \theta_{\text{Gen}}$$

BM3: JER & JES (Reco-Gen)

- JER is around 4.5% in barrel region; JES is around 0.
- The difference between 2 and 4 jets final-state is controlled within 1% level.

BM3: JER (Reco-Gen)

- JER also depends on jet flavors.
- For light-flavor jets with high energy and within central region of barrel, JER could reach 3%.

Compare to CMS at LHC

■ JER at CEPC is better than CMS as it should be; 2-4 times better in the same energy region.

BM3: JAR (Reco-Gen)

 \blacksquare JAR is around 1% in barrel region; JAS is independent of ϕ and energy.

■ The difference between 2 and 4 jets final-state is controlled within 1% level.

Pei-Zhu Lai (NCU, Taiwan) 22 CEPC WS 201

BM3: Thrust Jet Clustering Method

- Identify the 2 jets final-state event with (Efficiency x Purity) = 88.4%, the thrust jet clustering method could be employed.
- After "cleaned" selection, the thrust method has significant tail suppressed
 → expected to have improvement on jet energy and angular response.

BM3: JER (ee-kt—Thrust)

■ Improvement maybe came from boosting the system back to the rest frame with the neutrons' information.

BM3: JAR (ee-kt—Thrust)

lacksquare Both of jet heta and ϕ angular resolution are also improved by thrust method,

# of jets	Probability	1/3 of ZH events	
0	2.44%	Major SM Higgs decay modes.1 color singlet could be identified	
2	29.73%	(Single Z or Higgs boson)	
4	59.58%	2/3 of ZH events	
6	8.23%	 Dominance statistic o(ZH→qqqq.) Major uncertainty is on wrong jet 	
		pairing. (Potential huge impact)	

BM4: Separation of WW, ZZ, and ZH decay to 9999 final state

- 67% (4 + 6 jets) needs dedicated color-singlet identification: grouping the hadronic final-state particles into color-singlets (Z, W, H, γ^*). Can be done via jet clustering and pairing.
- Jet clustering is also essential for differential & EW precision measurements (e.g. TGCs).

BM4: WW & ZZ to 4 Jets Separation

- Low energy jet (20-120 GeV)
- Typical multiplicity could be 10².

- $\chi^{2} = \frac{\left| (m_{ij} m_{boson}) \right|^{2} + \left| (m_{ij} m_{boson}) \right|^{2}}{\sigma^{2}}$
- GenJet and RecoJet are clustered by ee-kt and paired according to χ^2 .
- WW & ZZ to 4 jets final-state separation is determined by: *
 - 1. (13%) Intrinsic boson mass/width (10 GeV)
 - 2. (53%) Wrong jet pairing for color singlet reconstruction jet clustering & pairing.
 - pairing.
 - 3. (58%) Detector response

CEPC WS 2019

BM4: WW & ZZ to 4 Jets Separation

= 47%

- Equal mass requirement: |M₁₂ M₃₄| < 10 GeV
 - Cost half of the statistic.
 - Overlapping can be reduced from 58%/53% to 40%/ 27% for the RecoJet/GenJet.
- CEPC baseline could separate WW & ZZ with full hadronic ≥ 0.02 final-state.
- Improve from the naive jet clustering & pairing and control the <u>ISR photon</u> in the event.
- ZH full hadronic final-state analysis is on the way.

Summary(1/2)

Jets are crucial for the CEPC Higgs physics

- 97% of ZH events evolve jets
- 1/3 of ZH events only come from single Z or Higgs boson.
- 2/3 of ZH events have more than one boson (e.g. ZH→qqqqq) need color singlet identification algorithm.

Summary(2/2)

- I. BMR < 4% is critical. Achieved at the CEPC baseline (3.8%)
 - * W, Z, Higgs boson can be efficiently separated at both semi-leptonic & full hadronic.
 - * Exploit Z-boson di-jet recoil mass to distinguish the ZH from ZZ process (main bkg).
- II. 2 jets final-state could be identified with efficiency×purity = 88.4%.
 - * Clustering by dedicated the jet clustering algorithm, thrust.
- III. Single Jet JER ~ 3-5% & JAR ~ 1%.
 - * Thrust clustering method is recommended for two jets final-state. It improves the JER 20%, 40% on tail (RMS), and JAR 20%.
- IV. Need a better color-singlet identification algorithm for full hadronic.
 - * Wrong jet pairing is the dominant effect to induce overlapping in full hadronic WW-ZZ separation.
 - * Equal mass requirement could reduce the overlap region to be better than semi-leptonic, but very costly.
 - * Physical impact is needed to be controlled, ISR photon.

Thank for your attention

BM4: WW, ZZ, ZH to 4 Jets Separation

Sample \ ID Efficiency(%)	WW	ZZ	ZH
WW	63.24	18.95	17.81
ZZ	16.09	57.89	26.02
ZH	9.99	13.84	76.17

χ^2	method	is	still	employed.	

Sample \ ID Efficiency(%)	WW	ZZ	ZH
WW	64.98	19.07	15.94
ZZ	26.51	50.54	22.96
ZH	20.29	22.93	56.77

- $\chi^{2} = \frac{\left| (m_{ij} m_{boson}) \right|^{2} + \left| (m_{ij} m_{boson}) \right|^{2}}{\sigma^{2}}$
- The *Efficiency x Purity* of ZH identification is 18% in the 5 ab⁻¹ data.
- The <u>statistical uncertainty</u> of ZH to full hadronic final-state could be achieved 0.25% after considering the WW and ZZ as bkg.

BM4: ZH Full Hadronic Identification

■ According to the final results, the following estimation could be declared: The identified efficiency of ZH signal is 60% with background, 20% ZZ and 10% WW. The cross section of ZZ is 5 times amount than ZH, 10 times from WW.

	Efficiency	XS				
WW	10%	10		100	Purity	
ZZ	20%	5		100	→	60/200 = 30%
ZH	60%	1		60		

Jets are crucial for the CEPC Higgs physics

- 97% of ZH events evolve jets
- 1/3 only come from single Z or Higgs boson.
- 2/3 has more than one boson (e.g. $ZH \rightarrow q\overline{q}q\overline{q}$) need color singlet identification algorithm.
 - I. BMR < 4% is critical. Achieved at the CEPC baseline (3.8%)
 - * W, Z, Higgs boson can be efficiently separated at both semi-leptonic & full hadronic.
 - * By Z-boson di-jet recoil mass to distinguish the ZH from ZZ process.
 - II. 2 jets final-state could be identified with *efficiency*×purity = 88.4%.
 - * Could be clustered by dedicated jet clustering algorithm, thrust.
 - III. Single Jet JER ~ 3-5% & JAR ~ 1%.
 - * Thrust clustering method is recommended for two jets final-state. It could improve the JER 20%, 40% on tail (RMS), and JAR 20%.
 - IV. Need a better color singlet identification algorithm.
 - * Wrong jet pairing is the dominant effect to induce overlapping in full hadronic WW-ZZ separation.
 - * Equal mass requirements: Reduce the overlapping to be better than semileptonic, but very costly.
 - * Other physical impact is significant: ISR photon etc.
 - * The <u>statistical uncertainty</u> of ZH to full hadronic final-state could be achieved 0.25% after considering the WW and ZZ as bkg.

BM2: Number of Jet Identification

20 Variables

# of charge lepton	EEC 6		
$\#$ of γ	EEC 4		
# of charge hadron	EEC 2		
# of neutro hadron	C parameter		
Εγ	D parameter		
Echarge hadron	Heavy Mass		
E _{Neutro hadron}	Max Broaden		
Εγ	Total Broaden		
Echarge hadron	Thrust		
E _{Neutro} hadron	y23, y45, y67		

■ Event-shape variables basic multi-variable analysis to separate 2, 4, and 6 jets final-state.

Yong-Feng Zhu

Event-shape Variables

Heavy Jet Mass

$$M_1^2 = \frac{1}{(\sqrt{s})^2} (\sum_{i=1}^{N} P_i)^2$$

$$M_2^2 = \frac{1}{(\sqrt{s})^2} (\sum_{i}^{N} P_i)^2$$

Jet Broadening

$$B_1 = \frac{1}{2\sum_{i=1}^{N} |P_j|} \sum_{i=1}^{N} |P_i \times n_T|, (P_i \times n_T) > 0$$

$$B_2 = \frac{1}{2\sum_{i=1}^{N} |P_i|} \sum_{i=1}^{N} |P_i \times n_T|, (P_i \times n_T) < 0$$

Jet Transition variable, y₂₃, y₄₅, y₆₇ ee-kt jet clustering algorithm

$$d_{ij} = 2min(E_i^2, E_j^2)(1 - cos\theta_{ij})$$

C and D Parameter

$$L^{ab} = \frac{1}{\sum_{j=1}^{N} |P_j|} \sum_{i=1}^{N} \frac{P_i^a P_i^b}{|P_i|}$$
$$C = 3(\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3)$$
$$D = 27\lambda_1 \lambda_2 \lambda_3$$

Energy-Energy Correlation

$$EEC = \frac{1}{\sigma_{tot}} \sum_{ij} \int d\sigma \frac{E_i E_j}{Q^2} \delta(\cos \chi - \cos \theta_{ij})$$

$$likelihood = \frac{\sum (P1_i) \times P2_i}{\sqrt{\sum (P1_i \times P2_i) \times \sum (P2_i \times P2_i)}}$$

Double-sided Crystal Ball

$$f(x|\alpha_{1},\alpha_{2},n_{1},n_{2},\bar{x},\sigma) = \begin{cases} \left(\frac{n_{1}}{|\alpha_{1}|}\right)^{n_{1}}e^{-\frac{|\alpha_{1}|^{2}}{2}}\left(\frac{n_{1}}{|\alpha_{1}|} - |\alpha_{1}| - \frac{x - \bar{x}}{\sigma}\right)^{-n_{1}} & \frac{x - \bar{x}}{\sigma} < -\alpha_{1} \\ e^{-\frac{1}{2}\left(\frac{x - \bar{x}}{\sigma}\right)^{2}} & -\alpha_{1} < \frac{x - \bar{x}}{\sigma} < \alpha_{2} \\ \left(\frac{n_{2}}{|\alpha_{2}|}\right)^{n_{2}}e^{-\frac{|\alpha_{2}|^{2}}{2}}\left(\frac{n_{2}}{|\alpha_{2}|} - |\alpha_{2}| - \frac{x + \bar{x}}{\sigma}\right)^{-n_{2}} & \alpha_{2} < \frac{x - \bar{x}}{\sigma} \end{cases}$$

Jet Multiplicity

BM3: JAS (Reco-Gen)

■ JAR is around 1% in barrel region; JAS is independent of ϕ and energy.

■ The difference between 2 and 4 jets final-state is controlled within 1% level.

Pei-Zhu Lai (NCU, Taiwan) CEPC WS 201

Kinematic Summary Plots(Parton level)

Pei-Zhu Lai (NCU, Taiwan)

CEPC WS 2019

E as the function of the polar angle

JAR(Reco-MCP)

ΔR as the function of ΔE

The jet clustering brings a significant uncertainty.

Event Selection

Items	(Reco-Gen)	(Gen-MCP)	
$\theta_{\text{Gen jet}} > 0.1 \& \theta_{\text{Gen jet}} < 3.1$	✓	✓	
$\Delta R(Reco-MCP) < 0.1$	✓	X	

Efficiency=

of leftover event # of total event

$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

Leading JER & JES

■ JER/JES between Reco jet and MCP would combine the effects of two previous stages.

Sub-leading JER & JES

JES in Phase Space

- JES also depends on the jet flavor.
- Light flavor jet has higher energy deviation.

JER in Phase Space

- JER also depends on the jet flavor.
- Higher jet energy and within central region of barrel, JER has impressive performance.

JES

JER & JES

Jet Energy Calibration

- Since the double-counting effect, jet energy would be overestimated.
- According to MC true energy and $\cos\theta$ distribution, JES can be used to calibrate the dijet invariant mass back to the value we put into simulation.
- After calibration, boson mass resolution is improved about 1%.

Summary

mw (GeV)	mz (GeV)	m _н (GeV)	Jets / PFOs	wi/wo Clean	wi/wo Cali
82.66 ± 3.54	93.69 ± 3.89	127.48 ± 4.93	Jets	0	0
82.79 ± 3.34	93.95 ± 3.48	127.31 ± 4.54	Jets	1	0
80.72 ± 3.46	91.67 ± 3.77	125.02 ± 5.11	Jets	0	1
80.82 ± 3.23	91.76 ± 3.39	124.39 ± 4.39	Jets	1	1
82.63 ± 3.53	93.69 ± 3.89	127.57 ± 4.80	PFOs	0	0
82.77 ± 3.32	93.90 ± 3.54	127.83 ± 4.50	PFOs	1	0

Compare with ALEPH at LEP

■ Our JER is better than ALEPH.