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Event Shape Observables

• Despite much progress in understanding of amplitudes, much less
progress in cross section level infrared safe “event shapes”:

1 Introduction

Recently, significant progress has been made in understanding properties of correlation functions
and scattering amplitudes in maximally supersymmetric Yang-Mills theory (N = 4 SYM). There
is growing evidence that the theory possesses a hidden integrability symmetry which is powerful
enough to determine both quantities for an arbitrary value of the coupling constant, at least in
the planar limit. Correlation functions and scattering amplitudes have different properties and
carry complementary information about the dynamics of N = 4 SYM. Unlike the correlation
functions, the on-shell scattering amplitudes are not well defined in four dimensions due to
infrared (IR) singularities and, hence, they require regularization. This introduces a dependence
on unphysical parameters (such as the dimensional regularization scale playing the role of the IR
regulator) which break (super)conformal symmetry. At the same time, the correlation functions
of protected (half-BPS) operators are well-defined functions of the coordinates of the operators
in four-dimensional N = 4 SYM. As a consequence, they do not require regularization and enjoy
the full unbroken N = 4 superconformal symmetry.

The main goal of this paper is to study a different class of gauge invariant quantities in
N = 4 SYM which admit two equivalent representations: They are given by integrated correlation
functions and, at the same time, they can be expressed as (infinite) sums over absolute squares of
scattering amplitudes. These quantities are closely related to various observables which have been
thoroughly studied in the context of QCD for the final states produced in e+e−annihilation [1,
2, 3]. In the latter case, the electron and positron annihilate to produce a virtual photon, which
in turn creates an energetic quark-antiquark pair from the vacuum. The outgoing particles move
away from each other and emit a lot of radiation before fragmenting into hadrons (see Fig. 1).
The distribution of particles in the final state of e+e− annihilation can be characterized by a
set of observables, the so-called event shapes (see, e.g., [2]). One of them, the energy-energy
correlation [4], plays a distinct role in our analysis.
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Figure 1: Final states in e+e− annihilation in QCD. The electron and positron annihilate to produce
a virtual photon γ∗(q) that decays into an arbitrary number of quarks and gluons which go through
a hadronization process (shaded rectangle) to become hadrons (double lines). The dot denotes the
electromagnetic QCD current.

Needless to say, QCD is quite different from N = 4 SYM. Due to the presence of a mass
gap in the hadron spectrum, QCD scattering amplitudes are free from IR singularities but their
calculation is still impossible due to our inability to control the confining (hadronization) regime
in the theory. A remarkable property of the event shapes is that, for asymptotically large values
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Figure1:Finalstatesine+e−annihilationinQCD.Theelectronandpositronannihilatetoproduce
avirtualphotonγ∗(q)thatdecaysintoanarbitrarynumberofquarksandgluonswhichgothrough
ahadronizationprocess(shadedrectangle)tobecomehadrons(doublelines).Thedotdenotesthe
electromagneticQCDcurrent.

Needlesstosay,QCDisquitedifferentfromN=4SYM.Duetothepresenceofamass
gapinthehadronspectrum,QCDscatteringamplitudesarefreefromIRsingularitiesbuttheir
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• Event Shapes play a crucial role in precision tests of QCD at e+e−

colliders, and in jet substructure at the LHC.

• Complicated nature of M for “old” event shapes often prevents
higher order calculations and use of modern techniques.

• CEPC motivates reconsidering QCD event shapes from a modern
perspective.
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From Jets to Correlation Functions

• Describing energy flow of QCD radiation requires a new language.

• Energy Flow Operators are the language of event shapes.

• Allows many new calculations that could provide remarkable probe of
QCD at CEPC.
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Energy Flow Operators
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Figure 1: The local operators O1 and O2 are integrated along parallel null lines (blue) on

the same null plane. On the left, we show a conformal frame where the null plane is u = 0,

and the operators are at di↵erent transverse positions ~y1, ~y2 2 Rd�2. On the right, we show

a conformal frame where the null plane is future null infinity I + and the null-integrated

operators are separated by an angle ✓12 on the celestial sphere. We give the relationship

between ✓12 and ~y12 in (1.10). Note that the entire circle at spatial infinity is really a single

point i0. Thus, the operators become coincident at the beginnings and ends of their integration

contours.

signature. We surround the operators with a sphere Sd�1 (assuming all other operator inser-

tions are outside the sphere) and perform the path integral inside the sphere. This produces

a state | i on the sphere. In a scale-invariant theory, | i can be expanded in dilatation

eigenstates

O1O2|0i = | i =
X

i

|Oii. (1.4)

By the state-operator correspondence, these eigenstates are equivalent to insertions of local

operators at the origin |Oii = Oi(0)|0i. Thus (1.4) is the desired OPE.

Unfortunately, this argument does not work for the product (1.1). There is no obvious

way to surround the null-integrated operators with an Sd�1 such that other operators are

outside the sphere. The structure of (1.3) suggests that perhaps we should surround the

null-integrated operators with an Sd�3 in the transverse space Rd�2. However there is no

obvious Hilbert space of states associated with such an Sd�3.1

1An older argument for the existence of the OPE exists due to Mack [21], relying on very di↵erent methods.

Mack shows that a product of operators acting on the vacuum O1O2|⌦i can be expanded in a sum of single

operators acting on the vacuum
P

i Oi|⌦i. However, this result is insu�cient for our purposes. One reason is

– 2 –

• Energy Flow Operators in Quantum Field Theory:

• Object of significant interest in their own right:
Average Null Energy (ANEC) Operator

Light-ray operator of stress tensor

r

[Sveshnikov,Tkachov] [Korchemsky,Oderda,Sterman] [Hofman, Maldacena]
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Energy Flow Operators
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One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=
X

i,j

Z
d�

EiEj

Q2
�

✓
z � 1 � cos�ij

2

◆
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

1Z

0

dt lim
r!1

r2niT0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†i
hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

⌃(z) =
1

2
C(↵s) z�

N=4
J (↵s) , (1.4)
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• Event Shapes are the study of correlations of ANEC operators.

• All energy flow observables can be constructed from these correlations.

• Much recent progress in understanding the small angle limit of ANECs
in (Non-)Conformal Field Theories.

[Tkachov]

[Hofman, Maldacena; Belitsky, Hohenegger, Korchemsky, Sokatchev, Zhiboedov; Kravchuk, Simmons Duffin;

Henn, Sokatchev, Yan, Zhiboedov; Belin, Hofman, Mathys; Kologlu, Kravchuk, Simmons Duffin, Zhiboedov; Korchemsky]

[Dixon, IM, Zhu]
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Outline

• Two Point Correlators at NNLL

• The Three Point Correlator

• Energy Correlators in CMS Open Data
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Two Point Correlators at NNLL

[Dixon, IM, Zhu:1905.01310]
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EEC at e+e− Colliders

• The EEC (two point correlator) is a classic e+e− observable.NNLO QCD vs. LEP data

L. Dixon      EEC at small angles Amplitudes 2019   July 2 6

Tulipant, Kardos, 
Somogyi, 1708.04093

z → 1 z → 0

• Exhibits large perturbative corrections in z → 0 (collinear) and z → 1
(back-to-back) limits:

• z → 1: Known to NNNLL
• z → 0: This talk.

[IM, Zhu:1801.02627]

Allows for precision

extraction of αs
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Energy Correlators in QCD

Fixed by kinematics and 
dimension analysis

All-order factorization for z→0

• Cumulant ⌦(z, ln
Q2

µ2
, µ) =

Z z

0

dz0 ⌃(z0, ln
Q2

µ2
, µ)

⌦(z, ln
Q2

µ2
, µ) =

Z 1

0

dx x2 ~JT (ln
zx2Q2

µ2
, µ) · ~H(x, ln

Q2

µ2
, µ)

• Both jet and hard function are vector in flavor space


• Hq (Hg) : probability of finding a quark (gluon) with 
momentum fraction x


• Jq (Jg) : probability of finding two parton with 
momentum fraction y1, y2 and relative transverse 
momentum qT in quark (gluon) initiated jet, 
weighted by y1*y2

Full interference 
effects retained in H 

and J, separately

z =
q2
T

x2Q2

7

• We can derive a timelike factorization formula for the 2-point
correlator in QCD:

Σ(z , ln
Q2

µ2
, µ) =

∫ 1

0
dx x2 ~J(ln

zx2Q2

µ2
, µ) · ~H(x ,

Q2

µ2
, µ)

d ~J(ln zQ2

µ2 , µ)

d lnµ2
=

∫ 1

0
dy y2 ~J(ln

zy2Q2

µ2
, µ) · P̂T (y , µ)

• The jet function satisfies the
renormalization group equation:

• Boundary conditions for RGE analytically computed to O(α2
s )

j
g
2 = n2

f

(
−

8
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A
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)

[Dixon, Moult, Zhu]
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To Three Loops in One Slide

• To achieve NNLL (single log counting), one needs all anomalous
dimensions at 3 loops, constants at 2 loops.
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• Control of 1
z , log z

z , log2 z
z

at three loops, plus
tower of logarithms.

• First collinear observable
known at this order.
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NNLL+NLO Results

• Resummed results at NNLL+NLO:

• Distribution depends very sensitively on quark vs gluon!

• Large perturbative corrections observed =⇒ Should extend to N3LL.

Gluon Jets (From Higgs)Quark Jets (From e+e−)
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Extension to NNNLL

• Extension to NNNLL in progress.

• Four loop (!!) twist 2 anomalous dimensions computed recently for
several N.

• Three loop constant for the jet function can be extracted using a trick
to relate the collinear limit to the back-to-back limit.

Anomalous dimensions and splitting functions beyond NNLO A. Vogt
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Figure 1: Moments of the singlet splitting functions at NNLO (lines) and N3LO (even-N points) for
αs = 0.2 and nf = 4, normalized to the respective NLO approximations.
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Figure 2: The dependence of the logarithmic factorization-scale derivatives of the singlet PDFs on the
renormalization scale µr at N = 2 (where the very small scaling violations of qs and g are related by the
momentum sum rule) N = 4 and N = 6 for the initial distributions (2.5).

3

• Provides a link between event shapes and some of the most precisely
known QCD quantities.
=⇒ how can it best be used for precision QCD studies (αs , ...)

[Moch, Vermaseren, Vogt, ...]
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The Three Point Correlator

[Chen, Dixon, Luo, IM, Yang, Zhang, Zhu]
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Multi-Point Correlators

• Multiparticle correlations encode more interesting information about
the internal structure of jets.

• Most basic objects are correlation functions of energy flow operators,
kept fully differential in angle =⇒ interesting multi-variable
functions.

I +

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=
X

i,j

Z
d�

EiEj

Q2
�

✓
z � 1 � cos�ij

2

◆
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

1Z

0

dt lim
r!1

r2niT0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†i
hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

⌃(z) =
1

2
C(↵s) z�

N=4
J (↵s) , (1.4)
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Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

⌃(z) =
1

2
C(↵s) z�

N=4
J (↵s) , (1.4)

– 2 –
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Symmetries of the Celestial Sphere

• It is convenient to exchange null reference vectors nµi with complex
coordinates zi on the celestial sphere:

nµi = (1 + |zi |2, zi + z̄i ,−i(zi − z̄i ), 1− |zi |2)

• Simple but powerful statement: Lorentz symmetries act on celestial
coordinates as SL(2,C) [Penrose]

zi → z ′i =
azi + b

czi + d
Other recent work:

[Pasterski, Shao, Strominger]

[Stieberger, Taylor]

[Schreiber, Volovich, Zlotnikov]
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Energy Correlators

• Correlators at the LHC/CEPC take a simple form in the small angle
limit.

• Shape behaves as a conformal N + 1 point function.

• Scaling controlled by twist-2 spin N + 1 anomalous dimension, γN+1.

[Hofman, Maldacena]
[Dixon, IM, Zhu]

[Korchemsky]
[Kologlu, Kravchuk, Simmons Duffin, Zhiboedov]
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Energy Correlators

• Angular dependence can be computed using a duality with Feynman
diagrams: angles ↔ dual coordinates

d3Σ

dxL dz dz̄
=

g4N2
c

64π5

(
J (d=8)(1, 2, 2)− J (d=10)(2, 2, 2, 1̃) +R(z)

)

• First analytic calculation of multipoint correlators!

• Approach should also allow calculation of four point correlator.

• Extension to generic angles (away from collinear limits) in progress:
Would be fascinating to measure!
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Energy Correlators in CMS Open Data
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[Dixon, Komiske, IM, Thaler, Zhu]
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ANECs with CMS Open Data

• Analyzing N-point Energy Correlators with CMS Open Data.
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[Dixon, Komiske, IM, Thaler, Zhu]

• Beautiful perturbative scaling over wide range.
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ANECs with CMS Open Data
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• Clear scaling behavior also observed for higher point correlators

• First theoretically understood probes of higher point correlations.

• Directly probes quantum scaling on the lightcone!

[Dixon, Komiske, IM, Thaler, Zhu]
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Energy Flow Operators in Open Data
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• Anomalous dimensions directly probed by ratios:

• Can this be used to measure αs? (slope is proportional to αs)

[Dixon, Komiske, IM, Thaler, Zhu]
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Shape Dependence

• Full shape dependence can be studied/calculated.
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• Understanding QCD at an unprecedented level of differentiality!

CEPC International Workshop November 19, 2019 22 / 24



Conclusions

• New Calculational Techniques allow
qualitatively new probes of QCD using
Energy Correlators =⇒ CEPC would provide
remarkable probe of QCD

• Two Point Correlators at NNLL

• Multi Point Correlators can be analytically
computed!
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Thanks!
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