

TPC technologies using MPGDs

Piotr Gasik

(TU Munich, CERN)

THE 2019 INTERNATIONAL WORKSHOP ON THE HIGH ENERGY CIRCULAR ELECTRON POSITRON COLLIDER

November 18-20, 2019

Institute of High Energy Physics, Beijing, China

18.11.2019

TPC - a versatile tracking detector

TPC – an (almost) ideal tracking detector

- large active volume and acceptance
- high particle densities
- 3D spatial information about hits
- good momentum, time and spatial resolution
- particle identification via measurement of $\langle dE/dx \rangle$

Wide range of applications

- low energy nuclear physics
- pp, e⁺e⁻, HIC
- neutrino physics
- BSM physics: DM, $\beta\beta Ov$
- ... and more

BRIEF TPC HISTORY

Predecessor in Oxford

THE IDENTIFICATION OF SECONDARY PARTICLES BY IONISATION SAMPLING (ISIS)

- First described in 1973/74 (J. Mulvey, W. Allison)
- ISIS pictorial drift chamber in the European Hybrid Spectrometer at the CERN SPS
 - ISIS1 4 × 2 x 1.3 m^3
 - **ISIS2** $4 \times 2 \times 5.1 \text{ m}^3$
- Large volume containing gas and *E*
- Two drift spaces
- Wire plane (anode/cathode) in the middle. G $\approx 10^4$
- Ar-CO₂ (80-20), $E_d = 500 \text{ V/cm}$, $\approx 100 \text{ } \mu \text{s} \text{ drift}$ (ISIS2)
- Measurement of ionization density for PID
 - Spatial resolution poor due to diffusion, long drift
- Ionisation resolution: 3.5% r.m.s.
- 89% mass assignment efficiency

[©] NIM A 224 (1984) 396

TPC - origins

THE AXIALLY-FOCUSED TIME-PROJECTOR DETECTOR

- Large, gas-filled cylindrical volume, *E* field between endplates
- Placed in a strong magnetic field *B*, *E* × *B* = 0 everywhere
- Traversing particle bends in *B* → momentum
- Ionisation trail drifts towards the endcaps → consider electrons
- Drift in z: $\sigma_z = \sqrt{2DT}$, no effect from **B** (no Lorentz force along **B**)
- In transverse direction: $\sigma_{xy} \rightarrow \frac{\sigma_{0xy}}{(1+\omega^2\tau^2)}$
 - $\omega = eB/m$ cyclotron freq. of electron
 - τ mean time between electron-gas collisions (use Ramsauer minimum!)
 - E.g. Ar-CH₄ at **B** = 1.5 T, $\sigma_{xy} \approx \sigma_{0xy}/50$
- Record r, ϕ , t at the endcaps, reconstruct 3D coordinates of primary ionization, w/o ambiguities

D. R. Nygren, "Proposal to Investigate the feasibility of a Novel Concept in Particle Detection", LBL internal report, February 1974.

PEP-4 TPC

- First TPC, with many innovations
- SLAC e+e- collider
- Ar-CH4 (80-20) at 8.6 bar, B = 0.4 T
 - primary statistics, and therefore signal-to-noise, increase with p
 - If E scaled accordingly, diffusion decreases as ~1/p
 - High pressure also used in the TOPAZ TPC
- Great physics outcome, including discovery of F^{*} (now D_s) meson

© J. Marx, Nygren-Fest, 2014

FROM A BALL-WIRE TO MPGD READOUT

PEP-4 TPC readout

- In the first proposal by D. Nygren (LBKL, 1974), 2 readout techniques • proposed
 - **Ball-wire detector**
 - MWPC readout

Ball-wire detector

TOP

- 0.25 inch diameter copper tubing •
- 1 mil diameter platinum wire (ended with a ball) ٠
- operated as a proportional counter or Geiger counter ٠
- high sensitivity ٠
- organized in a honeycomb structure ٠
- precise measurement of R within each structure ٠
- position measurement tracking momentum determination •

Driff direction of electrons.

PEP-4 TPC readout

- In the first proposal by D. Nygren (LBKL, 1974), 2 readout techniques proposed
 - Ball-wire detector
 - MWPC readout

Ball-wire detector

- 0.25 inch diameter copper tubing
- 1 mil diameter platinum wire (ended with a ball)
- operated as a proportional counter or Geiger counter
- high sensitiv
- organized in
- precise mea

"Almost" an MPGD 🙂

• position measurement – tracking – momentum determination

PEP-4 TPC readout

- In the first proposal by D. Nygren (LBKL, 1974), 2 readout techniques proposed
 - Ball-wire detector
 - MWPC readout

MWPC readout

dE/dx (keV/cm)

20

12

- Sense wire readout for dE/dx measurement
- 15 pad rows (circular arrangement) for position measurement
- No gating grid yet
- $\sigma_{xy} \approx 300 \, \mu m$
- $\sigma_{dE/dx} \approx 4\%$
- Further improvements with magnet upgrade in '84

© L. Galtieri, Nygren Symposium, 03.05.2014 (link) and the references therein

MWPC with Gating Grid

- Electrons reach the chambers and amplification occurs only when an event is triggered upon
- Gate is open during the maximum drift time only (t_e)
- Then the gate closes to prevent ions to invade drift volume (t_{ions})
- This technique opens the gate to higher rates and multiplicities without substantial space-charge distortions
- IBF suppression ≈10⁻⁵

Some TPCs with MWPC readout

Some TPCs with MWPC readout

Limitations of wire readout

1) Relatively long time to evacuate ions from the amplification regic

- Fast gain drop at high fluxes: (>10 kHz/cm²)
- Space charge accumulation, distortion of E field.
- Screening effect for next event
- 2) Limited multi-track separation (~100 µm)
 - Minimum wire distance ~1mm (mechanical instabilities due to electrostatic repulsion)
- 3) **E×B effects** (Lorentz angle) around wires degrades *x*-*y* resolution

4) MWPC with Gaiting Grid

- Introduces dead time (e.g. 200 μs in ALICE)
- Continuous operation not possible
- Reduces maximum readout rates to $\mathcal{O}(1 \text{ kHz})$
- IBF = 10-20% without GG

5) Aging - note gas and material dependency, also in MPGDs

- Permanent damage of anode structure after long term exposure to radiation.
- Formation of solid deposits
- Gain drops and instabilities

Overcoming the MWPC limitations

MPGD – Micro Pattern Gaseous Detectors

- Reduction of the size of the detecting cell (~ 100 um) using chemical etching techniques
- Same working principle as proportional wire chambers
 - Conversion region (low E drift field)
 - High E field in well localized regions where multiplication happens
- Rate capability goes up to few MHz/cm² thanks to the fast charge signal (<100 ns in MM)
- E×B effects negligible
- Simpler and more robust construction
- IBF can be significantly reduced to the <1 % level with optimized geometry and HV settings
- Electrical discharges sparks
 - High field close to both electrodes
 - inter-electrode space is on micron scale, i.e. very sensitive to dust
 - thin electrodes can be seriously damaged
- **Dielectric material**
 - Movement of charges when HV is applied
 - Charging up

Compteur à Trous (CAT) [F. Bartol et al., J. Phys. III 6, 337 (1996)]

WELL Detector (µCAT) [R. Bellazzini et al., NIM A423, 125 (1999)]

Micro Wire Detector

[B. Adeva et al., NIM A435, 402 (1999)]

Microdot Chamber [S.F. Biagi et al., NIM A361, 72 (1995)]

[A. Oed, NIM A263, 351 (1988)]

10 µm

Microstrip Gas Chamber

Microgap Chamber (MGC)

[F. Angelini et al., NIM A335, 69 (1993)]

GEM and Micromegas

GEM (Gas Electron Multiplier)

F. Sauli, Nucl. NIM A 386 (1997) 531

- high E-field inside 50 µm holes → amplification
- no issue with rate capability
- lower (effective) gain since signal is produced by (fast) electrons
- ion backflow $\mathcal{O}(10\%)$ for a single GEM
- operated in a stack (stability against discharges, IBF reduction)

Micromegas (Micro-Mesh Gaseous Structure)

Y. Giomataris et al., NIM A 376 (1996) 29

- high/low electric field regions separated by a mesh
- gap (50-100 μ m) uniformity by spacers and pillars
- great intrinsic ion backflow suppression
- stability against discharges
 (but: resistive MM, floating strip MM, segmented MM, ...)

IBF

- **Micromegas** .
 - Great IBF capabilities
 - depends on avalanche spread but cannot be smaller than the field ratio
 - further reduction: MM with offset meshes of $\mathcal{O}(10^{-5})$ (F. Jeanneau et al., NIM A 623 (2010) 94)
- **GEM stacks**
 - complex interplay of **geometry**, fields, diffusion
 - charge density and B-field dependency must be considered
 - hole alignment

M. Killenberg et al, NIM A 530 (2004) 251.

M. Ball et al, JINST 9 (2014) C04025

10⁶

F. Sauli et al., NIM A 560 (2006) 269.

T. Alexopolous et al., NIM A 640 (2011) 110.

Micromegas

- working principle as parallel plate detector, Q_{crit} ≈ 10⁷-10⁸ e⁻
- complete discharge of mesh; recovery time t_{dead} > 1 ms
- harmful for FEE but not for mesh (robustness!)
- **REMEDY:** resistive MM, floating strip/pad MM

GEMs

- $Q_{\rm crit} \approx 10^6 10^7 \, {\rm e}^{-}$ for single GEM hole \rightarrow build stacks
- optimized HV settings (lower amplification towards bottom of a stack)
- primary and secondary discharges (in the gaps) may be harmful to GEMs

S. Bachmann et al., NIM A 479 (2002) 294.

2.5

66000

(hA)

© ALICE, CERN-LHCC-2015-002, 2015.

[©] J. Bortfeldt, Ph.D. Thesis, LMU, 2015.

TPCs WITH MPGD READOUT

pp, e⁺e⁻ and heavy-ion collisions

High rate trackers

Development of a high-performance TPC for the physics up to $\sqrt{s} = 1$ TeV energy at the planned International Linear Collider

- Need to support high density of tracks and/or final states with 6+ jets
 - high granularity 3D tracking (σ_{pt} < 100 μ m (r ϕ) and \approx 500 μ m (rz)
 - good two tracks separation (2-hit resolution <2 mm (rφ) and <6 mm (rz))
 - track identification (dE/dx resolution \approx 5%)
- Extensive R&D with large-scale prototypes to choose the best readout technology
- Gating still optional (1 ms long bunch trains every 200 ms)

3GEM
 95% active area
 σ_{dE/dx} = 4.1% (220 pts)

- Encapsulated Resistive
 Anode MMG
- $\circ~\sigma_{
 m dE/dx}$ = 4.5-4.8% (170 pts)

o Gridpix - "Digital TPC"
 o QUAD: 4x TimePix3 chips
 o $σ_{dE/dx}$ = 2.7%

FOPI GEM-TPC (aka PANDA Prototype)

M. Berger et al. NIM A 869 (2017) 180 F. Böhmer et al. NIM A 719 (2013) 101

- A prove of the concept of an ungated TPC with GEM amplification
- Successfully operated within the FOPI spectrometer (GSI) in π +A run
- Currently in Bonn, to be used at CB-ELSA

- 3-GEM stack (Ar-CO₂)
- light-weight field-cage
- Readout with AFTER chip (T2K)
- ^{83m}Kr calibration
- first dE/dx measurement with GEM-based TPC

First continuously operated TPC – ALICE TPC upgrade

ALICE TPC

- Diameter: 5 m, length: 5 m
- Gas: Ne-CO2-N2, Ar-CO2
- Max. drift time: ~100 μs
- 18 sectors on each side, MWPC with GG
- 72 Inner and outer read out chambers: IROC, OROC

TPC Upgrade requirements:

- Continuous operation at 50 kHz Pb-Pb
- Nominal gain = 2000 in Ne-CO₂-N₂ (90-10-5)
- IBF < 1% (ϵ = 20), σ_{E}/E < 12% for ⁵⁵Fe
- Stable operation under LHC Run 3 conditions
- Unprecedented challenges in terms of loads and performance

Baseline solution: 4-GEM stack

- Combination of standard (S) and large pitch (LP) GEMs
- Highly optimized HV configuration
- Result of intensive R&D

Upgraded ALICE TPC

- Ions from 8000 events pile up in the drift volume at 50 kHz Pb-Pb
 - Distortions up to $dr \approx 20$ cm at an *IB* of 1 % (!!!)
 - Corrections to $\mathcal{O}(10^{-3})$ are required for final calibration
 - Space charge maps + external detectors (ITS, TRD)
 - Limits of calibration procedure tested up IB = 2 %
- dE/dx performance as with the MWPC readout
 - Confirmed with several test beams
 - Last one (2017) with new SAMPA -based FEE
- The TPC Upgrade is taking place **NOW**
 - GEM chambers installed, FECs installed. First tracks this week!
 - GEM TPC ready for installation and commissioning in ALICE in 03.2020

sPHENIX TPC

- State-of-the art jet detector at RHIC
- Probe the inner workings of QGP
- 15 kHz readout in Au+Au
- Tracker + Calorimeter stack
- <u>Continuous readout TPC</u>
 - A'la ALICE GEM TPC, 4-GEM readout considered
 - No external detector (TRD) for space-charge corrections
 - Further reduction of IBF?
 - Hybrid 2GEM + MM options?

LOW ENERGY NUCLEAR PHYSICS

Active target TPCs

• Experiments with secondary radioactive beams → low intensities (0.1-100 kHz)

- To compensate → thick targets and high detection efficiencies needed
- Target \rightarrow light particles (p, d, ^{3,4}He) \rightarrow change from direct to inverse kinematics
- Active target TPC → gas serves as target and tracking medium
- Gas contained in the TPC not only as the ionization medium but also as a low-mass active target.
- Charged nuclear reaction products can be tracked and identified inside the target
- Active target TPC overview ***** Y. Ayyad *et al*. Eur. Phys. J. A **54** (2018) 181

Challenges of Active Target TPCs

Active Target TPCs – relatively new development

- Current focus on the MPGD readout
- Still many challenges to address
- Recent review: Y. Ayyad et al. Eur. Phys. J. A 54 (2018) 181

High pile-up, space charge (fluctuations)

- Low intensity bunched beams may reach very high instantaneous rates (>10 MHz); bunch microstructure
- Beam contaminants (isobars) produced with orders of magnitude higher intensities than the ions of interest

Final resolution of the reaction characteristic

• Beam quality – large emittance

Dynamic range, discharge stability

- Detection of light recoil particles in presence of heavy beam particles
- E.g. 132 Sn + p \rightarrow 132 Sn + p (($\langle dE/dx \rangle_{Sn} = 2500 \times \langle dE/dx \rangle_{p}$)

Name	Lab	Gas	Volume	Volume	Pressure	Energy	Electronics	No. of	$Status^a$
		ampl.	[liter]	$[\mathrm{cm}^3]$	[atm]	[MeV/n]		chan.	
Ikar	GSI	NA	75	$60 \cdot 20^2 \pi$	10	$\gtrsim 700$	FADC	6 * 3	0
Maya	GANIL	wire	7.5	$30 \cdot 28.3^2$	0.02 - 2	2-60	gassiplex	1024	0
ACTAR TPC	GANIL	μ megas	8	20^{3}	0.01-3	2-60	GET	16000	С, Р
$MSTPC^{b}$	CNS	wires	21	$70\cdot 15\cdot 20$	< 0.3	0.5–5	FADC	128	0
			c						
CAT	CNS	GEM	2.5	$10\cdot 10\cdot 25$	0.2 - 1	100-200	FADC	400	Т
MAIKo	RNCP	μ -PIC	2.7	14^{3}	0.4–1	10-100	FADC	2×256	Т
pAT-TPC	MSU	μ megas	47	$50 \cdot 12.5^2 \pi$	0.01 - 1	1-10	GET	256	Т, О
AT-TPC	FRIB	μ megas	200	$100 \cdot 25^2 \pi$	0.01 - 1	1-100	GET	10240	0
TACTIC	TRIUMF	GEM	7.5	$24 \cdot 10^2 \pi$	0.25 - 1	1-10	FADC	48	Т
ANASEN	FSU/	wires	13	$43 \cdot 10^2 \pi$	0.1–1	1-10	ASIC	512	0
	LSU								
MINOS	IRFU	μ megas	6	6000	1	> 120	feminos	5000	0
O-TPC	TUNL	grid	19	$21 \cdot 30^2$	0.1	~ 10	optical	$2048 \times$	0
						CCD		2048	
SpecMAT	Leuvan	μ megas					GET		Т
TexAT	Texas AM	μ megas	5	$(22.4)^2 \cdot 10.15$			GET	1024	Т
ACTAF	FAIR	wires	200	$100 \cdot 25^2 \pi$	20	1000	FADC	288	Т
IRIS	TRIUMF	μ megas +			1-10		GET		Р
ATTPC		TGEM							

Y. Ayyad et al. Eur. Phys. J. A 54 (2018) 181

New (exotic) structures

- Development of Active Target TPCs may pave the road for more exotic structures and/or configurations
 - Further IBF suppression
 - Discharge stability in elemental gases w/o quenchers (H₂, D₂, He, ...)
- M-THGEM → Multi-Layer Thick GEM (M. Cortesi et al. Rev. Sci. Instrum. 88, 013303 (2017))
- MM-THGEM → Multi-Mesh Thick GEM (R. de Oliveira and M. Cortesi, JINST 13 (2018) P06019)
- And many more...

New readout concepts: Warsaw OTPC

OTPC - details: A.A. C. et al., Eur. Phys. J. A 52, 89, 2016

© A. Ciemny (Uni Warsaw) Bormio 2019 (link)

- General purpose Optical TPC (OTPC) for decay studies
- XY (CCD camera) + Z (PMT) readout
- He/Ar/CF₄ 69:29:2 (exemplary mixture)
- Multiplication (scintillation generation) with quadruple GEM stack
- Crucial studies for understanding nuclear structure:
 ß decays with delayed (multi-) particle emission

- A.A. C. et al., Prog. in Research (01.04.2017-31.03.2018), Cyclotron Institute, Texas A&M University, College Station, TX, USA, p. IV-67 (2018)
- A.A. L. et al., Phys. Rev. C 91, 064309 (2015)

Further development → ELITPC for nuclear disintegration using high energy γ beam (M. Ćwiok et al. Acta Physica Polonica B 49 (2018) 509)

• See more on optically read-out GEMs in F.M. Brunbauer et al. JINST 13 (2018) T02006

RARE EVENTS, BSM PHYSICS

- Recent review by D. Gonzalez-Diaz and collaborators
 - NIM A 878 (2018) 200 (<u>link</u>)

- Register complex topologies with high accuracy
 - reconstruct the energy loss path (usually full tracks confined)
 - low track multiplicities

Primarily: register light

- Primary scintillation
- Electroluminescence (secondary scintillation)
- But also charge (with MPGDs ?)
- Low rates
 - No IBF, no space-charge
 - No aging, however...
- ... only certified construction materials (radiopurity)
 - Low background
 - See e.g. <u>https://arxiv.org/pdf/0709.4524.pdf</u> (EXO-200)

Rare events TPC review

- Recent review by D. Gonzalez-٠ Diaz and collaborators
 - NIM A 878 (2018) 200 (link) —

	TPC	$E_d[{\rm V/cm}]$	$B\left[\mathrm{T}\right]$	$H(\times S) [\mathrm{m} imes\mathrm{m}^2]$	P [bar]	image plane	layout	medium	Ref
	ACTAR	flexible	-	$0.25 (\times 0.25^2)$	0.1-3	MM (bulk)	3D	generic (H ₂ , He, Ar)	[16]
	AT-TPC	flexible	up to 2	$1 (imes \pi 0.3^2)$	0.05-1	MM (microbulk)	3D	generic (H ₂ , He, Ar, CO_2)	[78]
	Warsaw	flexible	-	0.21(imes0.18 imes31)	1	4-GEM + PMT + CCD 2D		$Ar/He/CH_4/N_2$ -based	[76]
	TUNL	flexible	-	$0.21(imes 0.3 imes \ 0.3)$	0.13-0.18	$\mathrm{MSAC} + \mathrm{PMTs} + \mathrm{CCD}$	2D+1D	$\rm CO_2/N_2$	[15]
s	NEXT-NEW	200-600	-	$0.53(imes \pi0.21^2)$	5-15	${\rm mesh} + {\rm SiPMs} + {\rm PMTs}$	3D	¹³⁶ Xe-enriched xenon	-
Ы	PandaX-III	up to 1000	-	$(2 \times) 1 (\times \pi 0.75^2)$	10	MM (microbulk)	2D+2D	¹³⁶ Xe-enriched Xe/TMA	[287]
ĕ	DRIFT	600-700	-	$(2 \times) 0.5 (\times 1 \times 1)$	0.055	MWPC	2D+2D	CS_2, O_2 -based	[39]
ğ	DMTPC	150-250	-	$(4 \times) 0.275 (\times 1 \times 1)$	0.04-0.1	mesh+PMTs+CCDs	2D+1D	CF_4	[53, 51]
	NEWAGE	80-300	-	$0.41(imes 0.3 imes \ 0.3)$	0.2	μ -PIC + GEM	2D+2D	CF_4	[52]
	MIMAC	100	-	$(2\times)0.25(\times0.1\times0.1)$	0.05	MM (bulk) 2D		$\mathrm{CF}_4/\mathrm{CHF}_3/\mathrm{i}\text{-}\mathrm{C}_4\mathrm{H}_{10}$	[288, 51]
	TREX-DM	M flexible -		$(2 \times) 0.25 (\times 0.25 \times 0.25)$	1-10	MM (microbulk)	2D+2D	Ne, Ar -based	[21]
	T2K-ND	200-300	0.18	$(2 \times) 1.25 (\times 1 \times 2.55)$	1	MM (bulk)	3D	$\rm Ar/CF_4/i$ - $\rm C_4H_{10}$	[161]
	CAST	~ 100	-	0.03(imes 0.06 imes 0.06)	1.4	MM (microbulk), INGRID	2D+2D	Ar/i-C4H10	[21, 289]
	MuCap 2000 -		$0.12(imes 0.15 imes \ 0.3)$	10	MWPC	2D+2D	D-depleted H ₂	[290]	
a	DUNE-FD	1000	-	$(\times 4)$ 12 $(\times 60 \times 12)$	1	LEMs + PMTs	2D+2D	argon	[155]
as	LUX	181	-	$0.48 (imes \pi 0.235^2)$	1-2	mesh $+~2~{\rm PMT}$ planes	3D	xenon	[291]
Å	XENON1T	120	-	$1(imes\pi0.5^2)$	1-2	mesh + 2 PMT planes 3D		xenon	[66]
Ξ	PandaX-II	393.5	-	$0.6 (\times \pi 0.32^2)$	1-2	mesh + 2 PMT planes	3D	xenon	[292]
n	DarkSide-50	200	-	$0.35 (imes \pi 0.178^2)$	1	mesh + 2 PMT planes	3D	³⁹ Ar-depleted argon	[43]
σ	WARP(1001)	90-330	-	$0.6(imes \pi0.25^2)$	1	mesh + PMTs	3D	argon	[293]
	ALICE	400	0.5	$(2 \times) 2.5 (\times 18)$	1	MWPC $(GEMs)^{*a} + pads$	3D	$Ne/CO_2/N_2$	[61]
	STAR	135	0-0.5	$(2 \times) 2.1 (\times 18)$	1	MWPC + pads	3D	Ar/CH ₄	[286]

l'able 5

Some technical parameters of the most representative TPCs used in the search of rare processes, both in gas (top block) and dual (middle block) phase. For reference, the lowest block includes two paradigmatic collider TPCs. The size of the active dimension along the electric field is dubbed H and S is the active area. For dual-phase, the electric field is given for the liquid phase and the pressure for the gas phase. The compilation is illustrative since several of the collaborations are already heading towards an upgrade, e.g., NEXT [182], MIMAC [51], T2K-ND [294], DarkSide [295] or LUX [23].

*a the ALICE TPC will replace its MWPC plane by a 4-GEM one.

LUX Image by CH Faham (Brown)

S2

NOT allowed by SM: $0\nu\beta\beta$, $T_{1/2} > 10^{25}$ y (expectation), (A,Z) \rightarrow (A,Z+2) + 2e⁻ ٠

Drift Region

- Lepton number violation
- Neutrinos are Majorana fermions
- Experimental method: source = detector •
 - Peak over 2ν ßß Q spectrum
 - Width detector resolution make use of electroluminescence (near-intrinsic energy resolution)!

Isotope	$\beta\beta(0\nu)$ Half-life limit (years)	Natural Abundance [%]	Q-value (MeV)
⁴⁸ Ca	>1.4 × 10 ²² [31]	0.187	4.2737
⁷⁶ Ge	$>3.0 \times 10^{25}$ [32]	7.8	2.0391
⁸² Se	>1.0 × 10 ²³ [33]	9.2	2.9551
¹⁰⁰ Mo	>1.1 × 10 ²⁴ [34]	9.6	3.0350
¹³⁰ Te	$>4.0 \times 10^{24}$ [35]	34.5	2.5303
¹³⁶ Xe	>1.1 × 10 ²⁵ [36]	8.9	2.4578
¹⁵⁰ Nd	$>1.8 \times 10^{22}$ [37]	5.6	3.3673

R.Henning, Reviews in Physics 1 (2016) 29-35

NEXT TPC

Tracking plane (SiPMs)

0 20 40

X (mm)

- 10-15 bars, gaseous ¹³⁶Xe (clear topological reconstruction - spaghetti with two meatballs)
- Detection of secondary light multiplication
- PMT and SiPM readout
- Energy resolution of <0.5 % FWGM at $Q_{\rm bb}$
- NEXT-NEW (5-10 kg) currently operated
- NEXT-100 under construction

$0\nu\beta\beta$ – NEXT-MM & PANDAX-III

V. Álvarez et al., JINST 9 (2014) P03010

S. Wang, VCI 2019, Vienna (link)

- Alternative option based on charge readout with MPGD: NEXT-MM prototype (1kg, ~25 | active volume)
- Microbulk Micromegas
 - Gain uniformity over 50 μm gap
 - Radiopurity (Cu and Kapton, <0.1Bq/cm²)
 - Good energy resolution
- Xe/TMA 99:1 mixture (reduce *D* coeff.)
- Energy resolution:
 - 10.6 % FWHM @ 30 keV
 - 3-4 % at Q_{bb} in ¹³⁶Xe (extrapolation)
- Concept followed by PandaX-III Collaboration
 - China JinPing underground Lab (2.4 km underground + clean water shielding)
 - Phase 1: 2 m long, 1.5 m diameter module (200 kg HPGXe136, 10 bars)
 - Phase 2: 5x Phase 1 modules
 - TPC: symmetric, double-end charge readout
 - 82 20x20 cm² Microbulk MM modules, 2D strip readout
 - Sensitivity expected: 10^{26} y T_{1/2} limit
 - 20-kg scale prototype TPC (5 bar) with 7 MM has been built and operational (<u>https://arxiv.org/abs/1804.02863</u>)

Microbulk MM

T. Geralis et al., PoS (TIPP2014) 055

Directional Dark Matter searches

- We are all immersed in a halo of dark matter particles (0.3 GeV/cm³)
- Our Solar System moves through the halo (towards Cygnus) with $v_{sun} = 232$ km/s
- Dark matter particles are appearing as coming from the Cygnus constellation WIMP wind
- Yearly modulation (~10 %) of the DM wind, depending on the v_{earth} wrt. v_{sun}
- Look for interactions of DM particles from the halo with nuclei in a detector measure E_{recoil}
 - Expect low event rate → build large detectors
 - Expect low energy events $\mathcal{O}(\text{keV}) \neq \text{low thresholds}$
 - Expect lots of backgrounds + underground, radiopure materials, background discrimination
 - Build a TPC → measure shape of the recoil (bkg. rejection) and its direction (WIMP wind)

from B. Kavanagh (CEA Saclay), link

DMTPC & CYGNUS-TPC

DMTPC – a family of detectors

- Most recent DMTPC m³
- Low pressure (30 Torr) gas TPC (CF₄)
- Record F nucleus recoils after WIMP scattering
- Record CF₄ scintillation using CCD cameras
- PMT and charge readout
- Determine the direction form the dE/dx profile

CYGNUS-TPC

 CYGNUS-TPC project aims at building a multi-ton gas target for DM as various TPC detectors distributed in underground labs. Possibility of achieving great angular resolution by combining:

MPGD (GEM) + Optical readout

- ORANGE prototype
- He/CF₄ 60:40 mixture
- Time structure from PMT and GEM3_bot measurements

Negative Ion TPC technique:

- add small amount of highly electronegative component (SF₆, CS₂)
- create negative ions with ionization electrons
- drift with negligible diffusion
- amplification stage: exceeding electrons are released and an avalanche can develop
- Different arrival times (different v_{dirft}) allow to evaluate depth of the event
- Demonstrator (5×3×3 cm³) operated at close-to-atm pressure with He/CF₄/SF₆ 59:39.4:1.6

DMTPC & CYGNUS-TPC

DMTPC – a family of detectors

- Most recent DMTPC m³
- Low pressure (30 Torr) gas TPC (CF₄)
- Record F nucleus recoils after WIMP scattering
- Record CF₄ scintillation using CCD cameras
- PMT and charge readout
- Determine the direction form the dE/dx profile

CYGNUS-TPC

 CYGNUS-TPC project aims at building a multi-ton gas target for DM as various TPC detectors distributed in underground labs. Possibility of achieving great angular resolution by combining:

MPGD (GEM) + Optical readout

- ORANGE prototype
- He/CF₄ 60:40 mixture
- Time structure from PMT and GEM3_bot measurements

Negative Ion TPC technique:

NEUTRINOS

Neutrino experiments

Big questions of neutrino physics

- how	much	do	neutrinos	weigh?
-------	------	----	-----------	--------

- what is the nature of the v?
- which neutrino is the heaviest and which is the lightest (MH)?
- do neutrinos violate CP?
- is our picture correct?
- are there more than 3 kinds of neutrinos?

from: S. Zeller, NygrenFest, BNL 2014 (link)

and Ονββ decay long-baseline neutrinos

 β decay

short-baseline neutrinos • Neutrino sources for *v*-oscillation exp.

M. Diwan et al. Annu. Rev. Nucl. Par. Sci. 66, 47-71 (2016)

NIM A 637 (2011) 25-46

TPCs in neutrino physics

Gaseous TPCs

- **T2K** (long-base, near detector) → first large-scale implementation of MMG
- Hadro-production experiments for constraining ν fluxes (HARP, NA61/SHINE, MIPP) e.g. M. Posiadala-Zezula, J.Phys.Conf.Ser. 888 (2017) 012064
- Spherical TPCs (low energy ν) I. Giomataris, J.D. Vergados, NIMA 530 (2004) 330

T2K TPC

- check initial beam composition •
- pre-oscillation charged current neutrino interaction rates (5-7% sys. uncertainties) •
- reduce uncertainties in the oscillation measurements
- includes 3 large MM TPCs, AFTER chip readout ٠

վեսկո

operated at about 750 torr with Ar/CF4/iC4H10 (95:3:2) •

TPCs in neutrino physics

- LAr TPCs*
 - First proposed by C. Rubbia in 1977, CERN-EP/77-08 (1977)
 - ICARUS, ArgoNeuT, MicroBooNE, future short- and long-base exp.
 - dense medium, more v interactions, many ionization electrons
 - high electron lifetime, high light yield (40 k γ /MeV), cheap (!)
 - self triggering: primary Ar scintillation (PM readout)

based on:

- * S. Zeller, Nygren Fest, BNL 2014 and ref. therein (link)
- ** G. Brunetti, Fermilab, 16.03.2017 (link)

Dual Phase TPC **

- Extraction of the ionization electrons to the gas phase
- Amplification of the signal by charge avalanche in the gas phase
- Larger signal/noise ratio, better image quality
- Allows constructing detectors with longer drift distances
- Long drifts + charge attenuation (high purity required)
- Compensate attenuation with charge multiplication

Deep Underground Neutrino Experiment

and the forthe forthe

-

BEEK/2/2/2/

12282 0 0 0 2 2 2 4

Physics Program:

- ν oscillations
- ν cross-sections (1-2% sys. uncertainties)
- Proton decay
- Supernova and low energy ν
- BSM

- 1300 km from Fermilab
- 1500 m underground

4 modules, each one:

- 17 kton total
- 10 kton fiducial
 - (scale ICARUS by factor >10)
- Two technology options: single- and dual-phase Lar TPCs

- Ionization charges drift horizontally and are read out with wires
- No signal amplification in liquid
- 3.6 m maximum drift
- Read out by APAs

- read out on PCB anode
- Amplification of signal in gas phase by LEM
- 12 m maximum drift
- Access through chimneys on top

DUNE is committed to deploying both technologies staging depends on funding and ProtoDUNE results

WA105 and ProtoDUNE DP

- E. Mazzucato (CEA, Irfu, DPhP), RD51 Collaboration meeting, CERN Feb. 2019 (link)
- E. Mazzucato, RD51 Collab. Meeting, CERN Oct. 2019 (link)

- **3×3×1 m³ prototype** operated 06-11. 2017
- Proportional scintillation (S2) observed
- Extraction of electrons over 3 m² area achieved
- Amplification through LEMs measured

- 1 CRP = 36 Anodes + 36 LEMs (50×50 cm²) + 3×3 m² Extraction Grid
- Constructed at CERN NA (Neutrino Platform)
- Filled with Lar in Jul/Aug 2019
- Drift voltage 150 kV (nominal 300 kV)
- First tracks on August 29th

FUTURE

GridPix Technology

from: P. Kluit (NIKHEF), VCI 2019, Vienna (link)

- Pixel chip with integrated Grid (Micromegas-like)
- InGrid post-processed @ IZM
- Grid set at negative voltage (300–600 V) to provide gas amplification
- Very small pixel size, detecting individual electrons
- \circ Aluminium grid (1 µm thick)
- \circ 35 µm wide holes, 55 µm pitch, supported by SU8 pillars 50 µm high
- Pixel chip: **TimePix3**
- \circ 256×256 pixels, 55×55 µm pitch, 14.1×14.1 mm² active area
- TDC with **610 MHz clock** (1.64 ns)
- QUAD module four TimePix3 chips
- \circ 39.6 × 28.38 mm², ~70% active area
- Next step: 8×QUAD module

Pixel TPC

- Reduced occupancy → increased rate capabilities
- High granularity → identify properties of the ionization
- Single electron counting → direct measurements of converted photons
- Uniform gap distance → gain uniformity
- Measure complete collected charge for the particle energy deposition

M. Lupberger et al. PoS (TIPP2014) 225

SUMMARY

- TPC is a mature technology (45 y)
- Successfully used in many experiments
- Many new projects ongoing or being prepared
- For some applications (e.g. neutrinos, radioactive beams, ...) there is no better solution
- MPGD currently a default amplification structure
- We are not at our limits, still going bigger, faster, more precise...
- Still, many challenges ahead

BACKUP SLIDES

Chose the drift velocity such that the average electron energy falls in the Ramsauer dip: minimum elastic cross section

- e.g. ~100 V/cm in Ar-CH₄ (90-10)
- The magnetic field then helps focusing the electrons
- High drift velocity achieved like this

10-14 σ (cm²) 10-15 CH7 A٢ 10-16

From: D. Attié (CEA Saclay), Novosibirsk, 1.03.2008

Development of a high-performance TPC for the physics up to Vs = 1 TeV energy at the planned International Linear Collider

- Need to support high density of tracks and/or final states with 6+ jets
 - high granularity 3D tracking (σ_{pt} < 100 μ m (r ϕ) and \approx 500 μ m (rz)
 - good two tracks separation (2-hit resolution <2 mm (rφ) and <6 mm (rz))
 - track identification (dE/dx resolution ≈ 5%)
- To gate or not to gate?
 - Space charge accumulation in the drift volume (E×B effects)
 - Distortions of e⁻ drift trajectory
 - Primary charge distortions $\mathcal{O}(10 \ \mu m) =$
 - Point resolution $\mathcal{O}(100 \ \mu m)$
 - Amplification charge distortions up to 60 μm
 - Gating in LCTPC still possible as 1 ms long bunch trains will arrive every 200 ms
 - R&D ongoing

© P. Colas (CEA), IAS HEP@HKUST workshop, Honk-Kong, 18/01/19 (link)

New (exotic) structures

(See more in M. Cortesi, Monday 10:50, link)

- Development of Active Target TPCs may pave the road for more exotic structures and/or configurations
 - Further IBF suppression
 - Discharge stability in elemental gases w/o quenchers (H₂, D₂, He, ...)
- M-THGEM → Multi-Layer Thick GEM (M. Cortesi et al. Rev. Sci. Instrum. 88, 013303 (2017))
 - Higher max gain at low pressure (reduced secondary effects mitigated by photons, long avalanche region)
 - Higher effective gain (no charge losses in transfer gaps)

New (exotic) structures

(See more in M. Cortesi, Monday 10:50)

- Development of Active Target TPCs may pave the road for more exotic structures and/or configurations
 - Further IBF suppression
 - Discharge stability in elemental gases w/o quenchers (H₂, D₂, He, ...)
- MM-THGEM → Multi-Mesh Thick GEM (R. de Oliveira and M. Cortesi, JINST 13 (2018) P06019)
 - Improved IBF figure (here with MM-THGEM + WELL configuration) of 1-2%
 - Several MM-THGEM layers operated in the TPC mode may result in <1% IBF
 - Can be mounted in WELL configuration (close-bottom) improving avalanche statistics.

T2K : Tokai to Kamiokande

- Long baseline ν experiment in Japan
- Near Detector (280 m), J-PARC
 - Check initial beam composition
 - pre-oscillation charged current neutrino interaction rates (5-7% sys. uncertainties)
 - reduce uncertainties in the oscillation measurements
 - Includes 3 large MM TPCs, AFTER chip readout
 - Operated at about 750 torr with Ar/CF4/iC4H10 (95:3:2)
- Far Detector (295 km), Kamioka
 - Super Kamiokande
- Many great physics results
 - $\,$ CC ν_{μ} interaction in the T2K ND $\,$
 - World leading ν x-sections
 Abe et al., PRD 87, 092003 (2013)
 - first definitive (7 σ) observation of the appearance of ν_e in a ν_μ beam Abe et al., PRL 112, 061802 (2014)

FGDs

TPCs in neutrino physics

- LAr TPCs © S. Zeller, Nygren Fest, BNL 2014 and ref. Therein (<u>link</u>)
 - First proposed by C. Rubbia in 1977, CERN-EP/77-08 (1977)
 - ICARUS, ArgoNeuT, MicroBooNE, future short- and long-base exp.
 - dense medium, more v interactions, many ionization electrons
 - high electron lifetime, high light yield (40 k γ /MeV), cheap (!)
 - self triggering: primary Ar scintillation (PM readout)

- two 300 ton modules, each with 2 TPCs
- 3.6 × 3.9 × 19.9 m³
- 75 kV nominal voltage; 53'248 wires

DUNE FD – Dual Phase Lar TPC

© E. Mazzucato (CEA, Irfu, DPhP), RD51 Collaboration meeting, CERN Feb. 2019 (link)

© L. Molina Bueno (ETH Zurich), ICHEP 2018, Seoul (link)

Aging

Ar-CH₄ 1 year of TPC operation charge per area (mC/cm²)

Aging - note gas and material dependency, also in MPGDs

- Positive results with Ar, Ne, CO₂, CF₄ mixtures
- Signs of degradation in methane

TPC review

PARAMETER / EXPERIMENT	PEP4	TRIUMF	TOPAZ	ALEPH	DELPHI	STAR	ALICE 1)
1 OPERATION	1982/1984	1982/1983	1987	1989	1989	2000	2009
INNER / OUTER RADIUS	0.2 / 1.0	~0.15 / 0.50	0.38 / 1.1	0.35 / 1.8	0.35 / 1.4	0.5 / 2.0	0.85 / 2.5
[m]							
MAX. DRIFTLENGTH (L/2)	1	0.34	1.1	2.2	1.34	2.1	2.5
	0.4/1.205	0.0	1	1.6	1.02	0.05 / 0.5	0.5
MAGNETIC FIELD [1]	0.4/1.525	0.9	1	1.5	1.25	0.2570.5	0.5
GAS :	Ar/CH4	Ar/CH4	Ar/CH4	Ar/CH4	Ar/CH4	Ar/CH4	Ne /CO2/ N2
Mixture	80720	80720	90710	91/9	80720	90710	90/10/5
Pressure [atm]	8.5	1	3.5	1	1	1	1
DRIFT FIELD [KV / cm / atm]	0.088	0.25	0.1	0.11	0.15	0.14	0.4
ELECTRON DRIFT	5	7	5.3	5	6.69	5.45	2.7
VELOCITY [cm/usec]	2	1	0.0	5	0.05	0.10	
ωτ (see 2.2.1.3)	0.2/0.7	2	1.5	7	5	1.15/2.3	< 1
PADS: Size w•L [mm•mm]	7.5x7.5	(5.3-6.4)x19	(9-11)x12	6.2x30	~7x7	2.85x11.5	4x7.5
						6.2x19.5	6x10/15
Max. no. 3-D points	15 - straight	12	10 - linear	9+12 - circular	16 - circular	13+32 - straight	63+64+32
dE/dx: Max. no. samples/track	183	12	175	148+196	192	13+32	63+64+32
Sample size [mm atm]; w	4•8.5; wires	6.35; wires	4x3.5; wires	4; wires	4; wires	11.5 + 19 5 pads	7.5+10+15; pads
GAS AMPLIFICATION	1000	50.000		3000-5000	5000	3000/1100	20.000
GAP a-p: a-c: c-sate 2)	4.4.8	6	4.4.8	4:4:6	A: A: 6	2.2.6/4.4.6	2. 2. 3 / 3. 3. 3
PITCH a-a: cathode: sate	4.1.1	ľ	4.1.1	4.1.2	4.1.1	4.1.1/4.1.1	25.25.15
PULSE SAMPLING [MHz/	10/455 CCD	only 1 digitiz	10/455 CCD	11/512 FADC	14/300 FADC	96/400	5-10/500-1000 ADC
no, samples]	10/455, CCD	ADC	10/ 455, CCD	11/ 512,17400	14/ 500, IADC	5.07400	5-10/500-1000, ADC
GATING 3)	≥1984 o.on tr.	≥1983 o.on tr.	o. on tr.	synchr. cl.wo.tr	static	o.on tr.	o.on tr.
PADS, total number	15 000	7800	8200	41 000	20 000	137 000	560 000
PERFORMANCE							
$\Delta x_{T} [\mu m]$ -best / typ.	130-200	200/	185/230	170/200-450	180/190-280	300-600	spec:800-1100
Δx_{I} [µm]-best / typ.	160-260	3000	335/900	500-1700	900	500-1200	spec:1100-1250
2-TRACK SEPARATION	20		25	15	15	8 - 13 / 30	
[mm], T / L							
∂p/p ² [GeV/c] ⁻¹ : TPC alone; high p	0.0065		0.015	0.0012	0.005	0.006	spec:0.005
dE/dx [%] SINGLE TRACKS/ IN JETS	2.7 / 4.0		4.4 /	4.4 /	5.7 / 7.4	7.4 / 7.6	spec:4.9 / 6.8
COMMENTS		a in single PCs	chevron pads	circular pad rows	circular pad rows	No field wires	No field wires
		strong ExB effe	ct			> 3000 tracks	≤ 20 000 tracks

PARAMETER /	NA35	EOS / HISS	NA49 VTX	NA49 MAIN	CERES/NA45	HARP	T2K ^a
EXPERIMENT cont.							
1. OPERATION	1990	1992	1995	1995	1999	2001	2009/10
INNER / OUTER RADIUS or L	2.4/1.25 (L/	1.5/0.96 (L/	2.5/1.5 (L/W)	4/4 (L/W): 2x	0.6/1.3: L=2	0.1/0.41	2.2/0.7
/W[m]	W	W	· 2x				(H/L): 3x
MAX_DRIFTLENGTH (1/2) [m]	1.12 vert	0.75 (H)	0.67 vert	1.1 vert	0.7 rad	16	0.9 W
MAGNETIC FIELD [T]	0	13	1.5	0	$B_7 < 0.7$ Br <	0.7	0.2
MACINE HE HELD [1]	0	1.5	1.5	Č .	03	0.7	0.2
GAS :	Ar/CH4	Ar/CH4	Ne / CO2	Ar/CH4/	Ne/CO2	Ar/CH4	Ar/CE4/i-
OND .	AI / CII4	AI / CII4	1107 002	CO2	1107002	AI / CII4	C/H10
Mixture	01/0	90/10	90 / 10	90/5/5	80/20	91/9	05/3/2
Pressure [atm]	1	1	1	1	1	1	1
DPIET EIELD [hV / om / otm]	0.12	0.12	0.10	0.175	0206	0.111	0.2
ELECTRON DRIET VELOCITY	5	5.5	1.2	0.175	0.2-0.0	5.2	7
ELECTRON DRIFT VELOCITI	5	5.5	1.5	2.3	0.7-2.4	3.2	'
[cm / µsec]	0	0.5	1	0		2.2	0.7
DADS SIZE (L	5 5 40	0.5	1	0	10.1	5.5	0.7
PADS: SIZE (W•L, mm•mm)	5.5x40	8x12	3.5X(16, 28)	(3.6, 5.5)X40	10 chevron	6.5X15	6.9X9./
	(a) 30	100	1.50				
Max. no. 3-D points	60+30	128	<150	90		20	72x3
dE/dx: MAX. NO.	60	128	<150	90		20	72x3
SAMPLES/TRACK							
Sample size [mm• atm]; w or	40; pads	12	16, 28	40		15	9.7
p							
GAS AMPLIFICATION		3000	20 000	5000	8000	20 000	~1000
Gap a-p; a-c; c-gate 2)		4; 4; 6	3,2;	2,3; 3; 6	3;3;6	5;5;6	0.128
PITCH a-a; cathode; gate	4; 1; 2	4; 1; 2	4; 1; 1	4; 1; 1	6; 2; 2	4; 2; 2 stagg.	
PULSE SAMPLING [MHz / no.	12.5 /	10 / 256, SCA	/ 512	/ 512		10/>300,	/ 512 SCA
samples]						FADC	
GATING 3)		o. on tr.	o. on tr.	o. on tr.	o. on tr.	o.on tr.	none
PADS, total number	11 000	15 000	74 000	108 000	78 000	4000	125 000
PERFORMANCE							
$\Delta x_T [\mu m]$ -best / typ.	300-800	300	150	150	230/340	600-2400	600 (1m drift)
$\Delta x_L [\mu m]$ -best / typ.	250-450				dr=400/640	3.5	
2-TRACK SEPARATION [mm]	18	25		10			
$\partial p/p^2$ [GeV/c] ⁻¹ : TPC alone; high p		1			1	0.2/0.45-0.50	spec: <10 ;
dE/dx [%]: single tracks / in jets / 6		/4	<4 : VTX + Ma	in		16	spec: <10 /
COMMENTS	B=0	only pad r.o.	Kr ^m calibration	up to 1200 tr.	Radial TPC	el. cross-talk	Micromegas
				-			r.o.
	only pad r.o.		only pad r.o.	only pad r.o.	No field wires		
						-	i

1) Expected performance

2) a = anode, p = pads, c = cathode grid

3) o. on tr.: gate opens on trigger; cl.wo.tr. : opens before collision and closes without trigger; static : closed for ions only (see text).

H.J. Hilke, "Time Projection Chambers", Rep. Prog. Phys. 73 (2010) 116201