Progress of high time resolution MRPC

Yancheng Yu

Department of Engineering Physics,
Tsinghua University, Beijing, China
Nov 18th, 2019

Outline

- **♦** Motivation
- **♦ MRPC Simulation using Geant4**
- **Experiment**
 - The structure of the high time resolution MRPC
 - Cosmic Test in Tsinghua
 - Timing Method
 - Preliminary Results
- Conclusion & Future Plan

- Jefferson Lab (JLab) 12 GeV Upgrade
- Solenoidal Large Intensity Device (SoLID)
- The requirements for the TOF system are:
 - ✓ pi/k separation up to **7 GeV/c**
 - ✓ Time resolution < 20 ps
 - ✓ Rate capability > 20 kHz/cm^2

- The high time resolution & high rate MRPC for SoLID-TOF is proposed by Tsinghua
- High rate capability---- Low resistivity glass (10^{10} Ωcm)
 - ✓ Rate capability > 70 kHz/cm^2

✓ Successfully used in CBM experiment (Germany) _

Nucl. Instrum. Meth. A 713 (2013) 40

■ Some typical MRPCs that are used in several high energy physics experiments

Experiment	StackNb	GapNb	Gap Thickness [um]	Working E [kV/cm]	Time resolution [ps]
ALICE	2	5	250	104	~60
STAR	1	6	220	114	~60
CBM	2	4	250	110	~60

Exp.	Electronic	Time jitter/ps
ALICE	NINO Amplifier	~20
	HPTDC	~25
CBM	PADI	~10
	GET4	~25

- The high time resolution & high rate MRPC for SoLID-TOF is proposed by Tsinghua
- Thin gap MRPC + fast amplifier and waveform digitizer system (USTC)

- ☐ MRPC structure
 - ✓ Materials
 - ✓ Gap/glass thickness, stack/gap number
 - \checkmark Gas: 90% $C_2H_2F_4 + 5\% i-C_4H_{10} + 5\% SF_6$
- ☐ Particle source: 4 GeV mu-
 - ✓ perpendicular to the MRPC
- PAI model is used to simulating the primary energy deposition*, rather than Emstardard

*W. Allison. Ann. Rev. Nucl. Part. Sci. 30 (1980) 253. 2018 JINST 13 P09007.

- ☐ Primary energy loss
 - ✓ Ionize electron-ion pairs
 - \checkmark W = 30 eV
- ☐ Avalanche multiplication Townsend effect

 α : Townsend coefficient

 β : Attachment coefficient (by **Magboltz**)

- □ Electrons drifting in the electric field: induce a signal on the read out strips
- □*Ramo theory:

$$i(t) = \frac{E_W \cdot v}{V_W} e_0 N(t)$$

*S. Ramo, Currents induced by electron motion, Proc. IRE 27 (1939) 584.

■Weighting field

 \checkmark E_W is the weighting field which is the electric field when setting the potential of the read out electrode to be V_W and others 0.

 \square Space charge effect: $\sim 10^7$ electrons

- Werner Riegler, Christian Lippmann. Nucl. Instrum. Meth. A 500 (2003) 144.
- ☐ Include the Front-end electronics response by convolving the original current with a simplified FEE response function:

$$f(t) = A(e^{-t/\tau_1} - e^{-t/\tau_2})$$

 \square Noise: by adding a random number sampled from Gauss(0, σ) to every time bin

- > Induced signals generated by the energy deposition of all sensitive areas
- ➤ Induced signals on each readout electrode
- ➤ Information about time, charge, cluster size.....
- **Position resolution** -- with the center of gravity algorithm

In actual experiment, electronic noise and signal transmission should be considered carefully.

- Sap thickness below 160 μm , more than 3stacks, more than 4 gaps
 - \rightarrow 20 ps
- Thinner gap thickness, more gas gaps
 - better time resolution

- The charge induced increases with the increasing gap thickness significantly.
- > The number of stacks has a great influence on the charge.

- > Charge distribution.
- > Small signals worsen the time resolution.

Experiment — MRPC Structure

Tsinghua Prototype	4-stack MRPC
Gas Gap Width	104 um (fishing line)
Number of Gas Gaps	$4 \text{ stack} \times 8 \text{ layers} = 32$
Float Glass Thickness	500 um
Readout strip	$7 \text{ mm} \times 270 \text{ mm} (3 \text{ mm internal})$
Readout	Single-ended

Equivalent noise charge:

$$\sigma_{t} = \frac{\sigma_{V}}{dV/dt} = \frac{t_{rising}}{V_{signal}/_{noise}}$$

- ➤ Narrower gap width → fast charge dominant in the induced signal → Better timing resolution
- ➤ More gas gaps → Maintain the efficiency

Experiment — **Electronics**

Diagram of the AFE module

➤ Gain : 26 dB

➤ Bandwidth : 1.4 GHz

> Time resolution: better than 4 ps

Block diagram of the waveform digitization module

Nucl. Instrum. Meth. A 925 (2019) 53.

- ➤ 1024 sampling capacitors of the Switched Capacitor Array (SCA)
- ➤ Sampling frequency of 5.12 GHz
- > 0.5 mV rms & 3 ps time jitter
- ➤ DT5742 & Oscilloscope for the preliminary test and comparison

Experiment — Cosmic Ray Test

Gas component: 90% $C_2H_2F_4 + 5\% i-C_4H_{10} + 5\% SF_6$

Timing Method — ToT Method

Algorithm to find the time (time over threshold)

- ➤ Linear interpolation
- ➤ Polynomial fit

Timing Method — Neural Network Method

New Algorithm to find the first interaction time t₀

➤ Neural Network

Simulation dataset:

- 1. t_0 : first interaction happens
- 2. t_p : the signal reach the peak
- 3. 7 uniformly distributed points along the leading edge

Timing Method — NN: MLP

➤ Multilayer perceptron (MLP)

$$\frac{F_i(\vec{x})}{\text{Output}} = h(\sum_j (\omega_{ij}^2 g(...g(\sum_k (\omega_{jk}^1 g(\sum_l (\omega_{kl}^0 \underline{x_l} + \chi_k^0)... + \chi_j^1) + \chi_i^2))$$

Timing Method — NN: LSTM

> Recurrent neural networks(RNN): Long Short Term Memory network (LSTM)

20

Preliminary Results — ToT

Preliminary Results — ToT

Efficiency and Time Resolution vs High Voltage

Preliminary Results — LSTM

Conclusion & Future Plan

Summary:

- The 32-gap MRPC prototype with gap thickness of 104 μm has been developed.
 - ✓ Efficiency reaches 95% at ± 6250 V.
 - ✓ Time resolution around 20 ps.
- Detailed simulation of time resolution based on Geant4.
 - ✓ Different structure of MRPC.
 - ✓ Dependence on the thickness of gas gap.
- New analysis method such as deep learning technology will play an important role!

Future plan:

- Waveform digitization module will be ready soon (from USTC).
- New 24-gap MRPC is ongoing.
 - 4 stacks \times 6 gaps, gap width \sim 140 μm .
 - Low resistive glasses.
- □ Cosmic test & Beam test.

Thank you for your attention!

Backup

Backup

Experiment — Preliminary Results

Time difference =
$$(T_ch1 + T_ch3) - (T_ch2 + T_ch4)$$

Cut:

(T_ch1 - T_ch3) - (T_ch2 - T_ch4)

→ Angle of incident particle

Simulation— Multiplication

Multiplication in a small step:

■ P(n,x): Prob(one electron \xrightarrow{x} n electrons)

$$\begin{split} P(n, x + dx) = & P(n - 1, x)(n - 1)\alpha \, \mathrm{d}x (1 - (n - 1))\eta \, \mathrm{d}x \\ & + P(n, x)(1 - n\alpha \, \mathrm{d}x)(1 - n\eta \, \mathrm{d}x) \\ & + P(n, x)n\alpha \, \mathrm{d}x \, n\eta \, \mathrm{d}x \\ & + P(n + 1, x)(1 - (n + 1)\alpha \, \mathrm{d}x)(n + 1)\eta \, \mathrm{d}x \end{split}$$

- Divide the gap into ~300 steps, and simulate the multiplication in every step
- Generate a random number according to P(n,x)*:

$$n \begin{cases} 0, & s < k \frac{\bar{n}(x) - 1}{\bar{n}(x) - k} & k = \frac{\eta}{\alpha} \\ 1 + \operatorname{Trunc}\left[\frac{1}{\ln(1 - \frac{1 - k}{\bar{n}(x) - k})} \ln(\frac{(\bar{n}(x) - k)(1 - s)}{\bar{n}(x)(1 - k)})\right], & s > k \frac{\bar{n}(x) - 1}{\bar{n}(x) - k} & \text{s: uniform random number from (0, 1)} \end{cases}$$

Finally, avalanche growth like: $e^{(\alpha-\eta)x}$