Rucio

Scientific Data Management

Dr. Martin Barisits

on behalf of the Rucio team

Rucio in a nutshell

- Rucio provides a mature and modular scientific data management federation
 - Seamless integration of scientific and commercial storage and their network systems
 - Data is stored in files and can contain any potential payload
 - Facilities can be distributed at multiple locations belonging to different administrative domains
 - Designed with more than a decade of operational experience in very large-scale data management
- Rucio manages location-aware data in a heterogeneous distributed environment
 - Creation, location, transfer, deletion, and annotation
 - Orchestration of dataflows with both low-level and high-level policies

- Rucio is open-source software licenced under *Apache v2.0*
- Makes use of established open-source toolchains

Rucio main functionalities

Provides many features that can be enabled selectively

- File and dataset catalog
- Transfers between facilities including disk, tapes, clouds, HPCs
- Web-UI, CLI, and API to discover/download/upload/transfer/annotate data
- Extensive monitoring for all dataflows
- Support for caches and CDN workflows
- Expressive policy engines with rules and subscriptions
- Automated corruption identification and recovery
- Data popularity based replication
- 0 ...

Rucio can be integrated with Workload and Workflow Management System

- Already supporting PanDA, the ATLAS WFMS
- o Communities evaluate & develop integrations, e.g., CRAB/WMAgent, DIRAC, Pegasus, or Condor

Regular events

- Rucio Community Workshops [2018] [2019]
- Rucio Coding Camps [2018] [2019]
- Development Meetings [<u>Weekly</u>]

A growing community

Why a common data management solution?

- Shared use of the global research infrastructures will become the norm,
 especially with sciences at the scale of HL-LHC, DUNE, and SKA
 - o Competing requests on a limited set of storage and network, data centres will be multi-experiment
 - Compute is usually well-covered, e.g., via common scheduling, interfaces, and specifications
 - O Data was always missing a common open-source solution to tackle our shared challenges
- Ensure more efficient use of available data resources across multiple experiments
 - Allocate storage and network based on science needs, not based on administrative domains
 - Orchestrate dataflow policies across experiments
 - Dynamically support compute workflows with adaptive data allocations
 - Unify monitoring, reporting and analytics to data centres and administration
 - Potential for **shared operations across experiments**

SKA Regional Centres

- SRCs will provide a platform for transparent data access, data distribution, post-processing, archive storage, and software development
- Up to 1 PB/day to be ingested from each telescope, and made available for access and post-processing
- Need a way to manage data in a federated way across many physical sites transparent to the user

ARCHIVE

DATA DISCOVERY

DISTRIBUTED
DATA PROCESSING

USER SUPPORT

INTEROPERABILITY

Data management for ATLAS

A few numbers to set the scale

- o 1B+ files, 450+ PB of data, 400+ Hz interaction
- o 120 data centres, 5 HPCs, 2 clouds, 1000 users
- 500 Petabytes/year transferred & deleted
- 2.5 Exabytes/year uploaded & downloaded
- Increase 1+ order of magnitude for HL-LHC

Data management for ATLAS at HL-LHC

- Rucio is a central component to tackle HL-LHC data
 - Smart orchestration of the dataflow
 - Easy integration of new systems, ideas, and components
- Several combined effort R&D activities launched
 - Distributed storage and caching
 - Fine-grained data delivery services iDDS & ServiceX
 - Commercial cloud integration

Data Lakes

- R&D Highlight for HL-LHC: *Data Carousel*
 - Tight integration of workflow and dataflow for more **efficient use of high-latency storage** (i.e., tape)
 - New algorithms on multi-site I/O scheduling for both writing and reading
 - **Smart placement** of data on based on estimated access patterns

Rucio concepts - Namespace

- All data stored in Rucio is identified by a Data IDentifier
 (DID)
- There are different types of DIDs
 - Files
 - Datasets Collection of files
 - Container Collection of dataset and/or container
- Each DID is uniquely identified and composed of a scope and name, e.g.:

Rucio concepts - Declarative data management

Express what you want, not how you want it

 e.g., "Three copies of this dataset, distributed evenly across multiple continents, with at least one copy on TAPE"

Replication rules

- Rules can be dynamically added and removed by all users, some pending authorisation
- Evaluation engine resolves all rules and tries to satisfy them by requesting transfers and deletions
- Lock data against deletion in particular places for a given lifetime
- Primary replicas have indefinite lifetime rules
- Cached replicas are dynamically created replicas based on traced usage and popularity
- Workflow system can drive rules automatically, e.g., job to data flows or vice-versa

Subscriptions

- Automatically generate rules for newly registered data matching a set of filters or metadata
- e.g., project=data17_13TeV and data_type=AOD uniformly across T1s

Rucio concepts - RSEs

- Rucio Storage Elements (RSEs) are logical entities of space
 - O No software needed to run at the facility except the storage system, e.g., EOS/dCache/S3, ...
 - RSE names are arbitrary, e.g., "CERN-PROD_DATADISK", "AWS_REGION_USEAST", ...
 - Common approach is one RSE per storage class at the site
- RSEs collect all necessary metadata for a storage system
 - o Protocols, hostnames, ports, prefixes, paths, implementations, ...
 - O Data access priorities can be set, e.g., to prefer a different protocol for LAN-only access
- RSEs can be assigned metadata as well
 - Key/Value pairs, e.g., country=UK, type=TAPE, is_cached=False, ...
 - You can use RSE expressions to describe a list of RSEs, e.g. country=FR&type=DISK for the replication rules

Rucio concepts - Metadata

Rucio supports different kinds of metadata

- File internal metadata, e.g., size, checksum, creation time, status
- Fixed physics metadata, e.g., number of events, lumiblock, cross section, ...
- Internal metadata necessary for the organisation of data, e.g., replication factor, job-id,
- Generic metadata that can be set by the users

Generic metadata can be restricted

- Enforcement possible by types and schemas
- Naming convention enforcement and automatic metadata extraction

Provides additional namespace to organise the data

- Searchable via name and metadata
- Aggregation based on metadata searches
- Can also be used for long-term reporting, e.g., evolution of particular metadata selection over time

Architecture

Servers

- HTTP REST/JSON APIs
- Token-based security (x509, ssh, kerberos, ...)
- Horizontally scalable

Daemons

- Orchestrates the collaborative work
 e.g., transfers, deletion, recovery, policy
- Horizontally scalable

Messaging

STOMP / ActiveMQ-compatible

Persistence

- Object relational mapping
- Oracle, PostgreSQL, MySQL/MariaDB, SQLite

Middleware

Connects to well-established products,
 e.g., FTS3, DynaFed, dCache, EOS, S3, ...

Python

Support for Python2 and Python3

Operations model

- Objective was to minimise the amount of human intervention necessary
- Large-scale and repetitive operational tasks can be automated
 - Bulk migrating/deleting/rebalancing data across facilities at multiple institutions
 - Popularity driven replication and deletion based on data access patterns
 - Management of disk spaces and data lifetime
 - Identification of lost data and automatic consistency recovery
- Administrators at the sites are not operating any Rucio service
 - O Sites only operate their storage exposed via protocols (POSIX, ROOT, HTTP, WebDAV, S3, gsiftp, ...)
 - Users have transparent access to all data in a federated way
- Easy to deploy
 - PIP packages, Docker containers, Kubernetes

Monitoring & analytics

TLAS Rucio Un Montario Reports of Basic Designation of Control Montario Co

Account Usage Overview (in TB)

RucioUI

- Provides several views for different types of users
- Normal users: Data discovery and details, transfer requests and monitoring
- Site admins: Quota management and transfer approvals
- Central administration: Account / Identity / Site management

Monitoring

- Internal system health monitoring with Graphite / Grafana
- Transfer / Deletion / ... monitoring built on HDFS, ElasticSearch, and Spark
- Messaging with STOMP

Analytics and accounting

- o e.g., Show which the data is used, where and how space is used, ...
- Data reports for long-term views
- Built on Hadoop and Spark

Community-driven development

- We have successfully moved to community-driven development
 - Requirements, features, issues, release are publicly discussed (e.g., weekly meetings, GitHub, Slack)
 - The core team is usually only **providing guidance** for architecture/design/tests
 - Usually 1-2 persons from a community then take responsibility
 to develop the software extension and also its continued maintenance
- Communities are helping each other across experiments
 - Effective across time zones due to US involvement.
 - Automation and containerisation of development **lowers barrier of entry** for newcomers
 - Core team then only takes care about the management and packaging of the releases

Summary

- Several experiments and communities went from evaluation to production
 - AMS and Xenon as early adopters
 - Adoption by CMS was a decisive moment
 - Strong US and UK participation for support, development, and deployment
 - Successful integrations with existing software and computing infrastructures
- Emerging strong cooperation between HEP and multiple other fields
 - Notably neutrino and astronomy, with growing interest from more diverse sciences
- Community-driven innovations to enlarge functionality and address common needs
- Rucio is developing into a common standard for scientific data management
 - A successful collaborative open source project

Thank you!

Website

http://rucio.cern.ch

Documentation

https://rucio.readthedocs.io

Repository

https://github.com/rucio/

Images

https://hub.docker.com/r/rucio/

Online support

https://rucio.slack.com/messages/#support/

Developer contact

rucio-dev@cern.ch

Journal article

https://doi.org/10.1007/s41781-019-0026-3

Twitter

https://twitter.com/RucioData