CEPCSW Prototype and Future Plan

Zou Jiaheng

On behalf of the CEPCSW working group

2019.11.18

Introduction of CEPC Software

- CEPC software originally started from the iLCSoft (many thanks)
 - LCIO, Marlin, tracking and flavor-tagging
 - New components for CEPC: simulation, reconstruction...
 - Used for the CDR study, which is released in Nov, 2018
- A new framework for TDR is considered at the Oxford workshop, April 2019
 - to demonstrate the capabilities to meet future requirements
 - to support continuous integrations of new software components
- The common view at the Bolognia workshop, June 2019
 - A Common Software Stack (KEY4hep) for future collider experiments
 CEPC, CLIC, FCC, ILC, SCTF
 - Maximize the sharing of software components between experiments

A typical HEP Software Stack

[Ref]: André Sailer, etc., CHEP2019

https://indico.cern.ch/event/773049/contributions/3474763/attachments/1938664/3213633/191105_sailer_key4hep.pdf

Applications usually rely on large number of libraries, where some depend on others

The Goal of CEPCSW Prototype

- Based on KEY4hep (Common Software Stack for HEP)
- Reuse existing components
 - EDM4hep/PODIO, DD4hep, Gaudi, ROOT ...
- Implement the specific components for CEPC
- Provide a ready-to-work environment to algorithm developers and physicists
 - Migrate tracking algorithms from Marlin to CEPCSW
 - Integrate more algorithms and features
- Move from Marlin to the new software system

Tasks of CEPCSW Prototype

Components	Tasks	Status
General	Software infrastructure Core modules	\checkmark
EDM & I/O	PLCIO data model and I/O LCIO compatible reader	\checkmark
Geometry and Simulation	DD4hep integration Simulation framework	\checkmark
	SiliconTracking	\checkmark
Reconstruction	More reconstruction algorithms	In progress
Build and release	Git, CMake, CVMFS	Ready

Gaudi: the Underlying Framework

- The core part of the framework is small
- key components:
 - Application Manager
 - Services
 - Algorithms
 - Tools

- Data is separated from algorithms physicists can concentrate on the algorithms
- Originally developed for LHCb, also used by BESIII and DYB in China

The Gaudi Framework

- Application manager: the job controller
 - Creation, configuration and management of services and algorithms
 - Algorithm scheduling during the event loop
 - Terminating the job properly
- User components
 - Algorithm: the concrete calculations to the event
 - Service: the common functions which can be invoked by users
 - Tool: subroutines belong to an algorithm
- High Performance Computing
 - Multithreading computing is supported since v29
 - Parallelized functional and reentrant algorithms
 - Transparent data management in memory

PODIO: an Event-Data Model toolkit

[Ref]: F. Gaede, etc. , CHEP2019

https://indico.cern.ch/event/773049/contributions/3473254/attachments/1939721/3215730/gaede_podio_chep19.pdf

PODIO is originally developed in context of the FCC study

- user layer (API):
 - handles to EDM objects (e.g. Hit)
 - collections of EDM object handles (e.g. HitCollection).
- object layer
 - transient objects (e.g. HitObject) handling references to other objects and vector members
- POD layer
 - the actual POD data structures holding the persistent information (e.g. HitData)

direct access to POD also possible - if needed for performance reason

EDM4hep

The EDM4hep project is being constructed in the context of CSS

- Based on LCIO and FCC-edm
- Provide a common event data model
 - Common core classes described in a yaml file
 - C++ Code is generated by PODIO
 - The persistency layer (ROOT, HDF5, ...) can be changed easily
 - Each experiment can implement their own extensions
- A project followed by HEP Software Foundation
 - Regular meeting in every 2 weeks (CERN, DESY, IHEP ...)
 - <u>https://github.com/HSF/EDM4hep</u>
- But, it is not ready yet : (

Current EDM in CEPCSW Prototype

- CEPCSW will use PLCIO before EDM4hep is ready
- PLCIO is an implementation of the LCIO event data model in PODIO

- EDM4hep
 - The migration from PLCIO to EDM4hep should be easy
- CEPC is the first user of PLCIO
 - Missing classes, potential problems ...

FWCore

FCCSW FWCore

- DataWrapper: PLCIO data collection -> DataObject in Gaudi
- DataHandle: user interface to register/retrieve data to/from Gaudi TES (Transient Event Store)
- PODIO data service: read/write PODIO data objects

CEPCSW FWCore

- Mainly taken from FCCSW FWCore (many thanks)
- Extension to read LCIO data generated by Marlin

Read the Existing LCIO Data

- LCIODataSvc
 - Read LCIO files via the LCIO library
 - Convert LCIO data objects to PLCIO data objects
 - Register PLCIO data objects to Gaudi Event Data Store

- Current Status
 - Data converters for reconstructed data types
 - Some of the data relations are not fully recovered (there are some limits to data analysis now)

Detector Description and Simulation

Unified Geometry Service

Interfaced to DD4HEP

*

Reconstruction

Simulation

Reconstruction: SiliconTracking

As a first step, the SiliconTracking algorithm is migrated from Marlin to CEPCSW The results are intelligible same as Marlin's. See Chengdong's report later

Software Infrastructure and Building

- Common tools
 - CMake: Build & deployment
 - Gaudi cmake macros
 - Git: version control
 - <u>http://cepcgit.ihep.ac.cn/cepc-prototype</u>
 - CVMFS: software distribution
 CEPC specific: /cvmfs/cepcsw.ihep.ac.cn/prototype
- Software building
 - Based on FCCSW & LCG software stack now (many thanks)
 - Move to KEY4hep in the in the future

A Preliminary Testing

- A digitization algorithm migrated from Marlin
- Geometry: GearSvc migrated from Marlin
- Data and I/O
 - Read .slcio (LCIO) format files with LCIODataSvc
 - Write .podio (PLCIO) format files with PodioDataSvc

Compare the results with Marlin

Physics Results

The results of CEPCSW and Marlin are exactly the same

Attaching file PlanarDigi_marlin.root (TFile *) 0x7fc1ef93ea70 root [1] planarDigi->Show(13000) =====> EVENT:13000 side = 0laver = 3 module = 8 = 0 sensor theta_xcar = 1.5708phi_xcar

theta_ycar

phi_ycar

edep

= 1.428

= 8.65927e - 17

= 4.89194e - 05

= -2.49899

A	ttaching file P	Lar	narDigi_gaudi.root		
(TFile *) 0x7f9b3	390	1043d0		
r	oot [1] planarD	igi	L—>Show (13000)		
=====> EVENT:13000					
	side	=	0		
	layer	=	3		
	module	=	8		
	sensor	=	0		
	theta_xcar	=	1.5708		
	phi_xcar	=	1.428		
	theta_ycar	=	8.65927e-17		
	phi_ycar	=	-2.49899		
	edep	=	4.89194e-05		

Future Plans

- Software migration from Marlin to CEPCSW
 - Existing algorithms (reconstruction)
 - Geometry management: GEAR -> DD4hep
 - Recover the relations between PLCIO data object
 - Common services, such as database accessing
- Parallel Computing
 - Use the latest version of Gaudi
 - Writing functional and reentrant algorithms
 - EDM & I/O performance analysis and optimization
- Integration with Deep Learning algorithms
- Package management with SPACK, fewer external libs

Summary

- CEPCSW prototype has been developed using Gaudi, DD4hep, Geant4 and PLCIO, etc.
- In the prototype
 - Both detector simulation and tracking algs can be run successfully
 - By implementing data conversion, previously produced MC data can be reused
- It is ready to add more algorithms to the prototype by following given examples
- Future development will be based on KEY4hep collaborating with CERN

Thank You! 谢谢