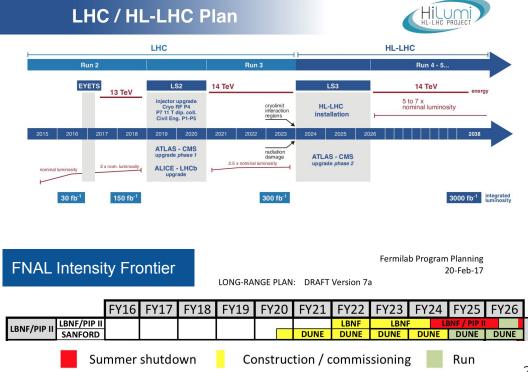


HEP Software Foundation

HEP Software R&D

Graeme A Stewart, CERN EP-SFT

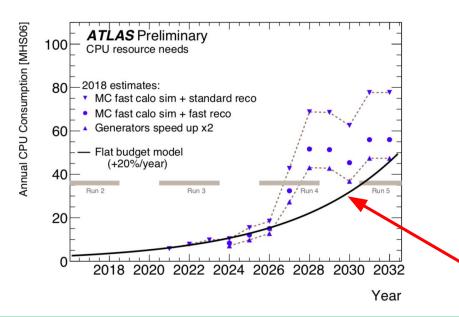

2019 International Workshop on the High-Energy Circular Electron-Positron Collider 2019-11-18

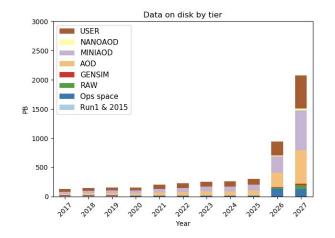
HL-LHC and the Intensity Frontier

The mission:

- Exploit the Higgs for SM and BSM physics
- b, c, tau physics to study BSM and matter/anti-matter
- Dark matter
- Neutrino oscillations and mass
- QGP in heavy ion collisions
- Explore the unknown

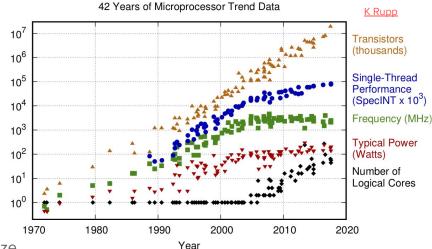
Rich physics programme that is highly reliant on software to achieve its goals

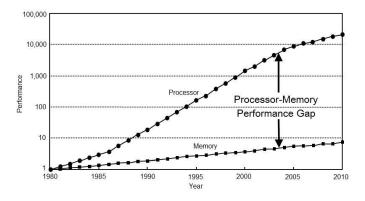

HEP Software and Computing Today


- High Energy Physics has a vast investment in software
 - Estimated to be around 50M lines of C++
 - Which would cost more than 500M\$ to develop commercially
- It is a critical part of our physics production pipeline, from triggering all the way to analysis and final plots as well as simulation
- LHC experiments use about 1M CPU cores every hour of every day, we have around 1000PB of data with 100PB of data transfers per year (10-100Gb links)
 - We are in the exabyte era already
- This is a huge and ongoing cost in hardware and human effort

Challenges for the Next Decade

- HL-LHC brings a huge challenge to software and computing
 - Both rate and complexity rise

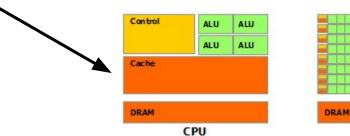



- Not just a simple extrapolation of Run 2 software and computing
 - Resources needed would hugely exceed those from technology evolution alone

This is even probably too optimistic, ~5-10%?

Technology Evolution

- Moore's Law continues to deliver increases in transistor density
 - But, doubling time is lengthening
- Clock speed scaling failed around 2006
 - No longer possible to ramp the clock speed as process size shrinks
 - Leak currents become important source of power consumption
- So we are basically stuck at ~3GHz clocks from the underlying Wm⁻² limit
 - This is the Power Wall
 - Limits the capabilities of serial processing
- Memory access times are now ~100s of clock cycles


Decreasing Returns over Time

- Conclusion is that diversity of new architectures will only grow
- Best known
 example is of GPUs

[link]

GPU

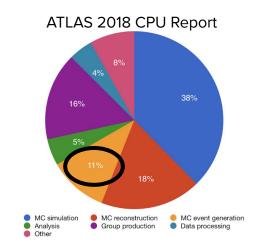
GPUs dedicate far more transistors to arithmetic

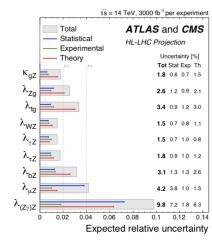
Drivers of Technology Evolution

- Low power devices
 - Driven by mobile technology and Internet of Things
- Data centre processing
 - Extremely large clusters running fairly specialist applications
- Machine learning
 - New silicon devices specialised for training machine learning algorithms, particularly lower precision calculations (e.g. bfloat)
- Exascale computing
 - Not in itself general purpose, but poses many technical problems whose solutions can be general - HEP pushed to use HPC centres, especially in US; most computing power in accelerators
- Energy efficiency is a driver for all of these developments
 - Specialist processors would be designed for very specific tasks
 - Chips would be unable to power all transistors at once: dark silicon is unlit when not used

Future Higgs Factories

- Next machine after HL-LHC likely to be a Higgs factory, e⁺e⁻ collider
 - Circular or linear not known at this point
 - European Strategy Update ongoing and US Snowmass just beginning
- Event complexity is not at all as high as for hadronic machines
- However, detector resolutions and reconstruction complexity can be high
 - High-granularity calorimetry is very likely
 - Pure software reconstruction is quite likely
 - Interaction rates for lower energy phases of circular machines (Z-pole) can be extremely high
- We would ignore software and computing challenges at our peril
 - Need to be flexible at this stage to manage uncertainty and share efforts between different options
 - Learn a lot from the experience of the LHC experiments, who have led the transition into a modern computing environment and continues to evolve

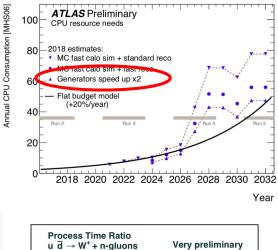

High-Energy Physics Software Foundation

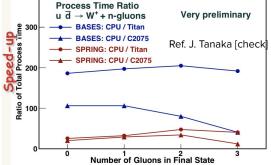


- HSF setup in 2014 as a bottom-up community organisation
- Promote *common efforts* to solve the software problems of high-energy physics
- Produced the Community White Paper in 2017 (<u>https://doi.org/10.1007/s41781-018-0018-8</u>), giving a *roadmap* for HEP software and computing into the 2020s
- Since then HSF Working Groups have been formed, tackling major areas of interest for the field
 - N.B. <u>nominations still open for convenors</u> in a number of working groups
- Regular HSF workshops, often held together with WLCG

Event Generators

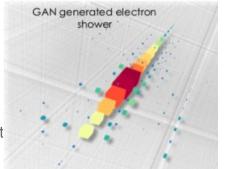
- Event generators are the start of the simulation chain
 - At the LHC Run1 only leading order generators were used
 - Negligable CPU consumption compared with detector simulation no pressure to optimise
- However, with LHC upgrades coming higher order generators become much more important
 - These are inherently much more costly to run
 - Problems of negative weights can increase hugely the samples needed for weighted event samples
- In addition, the theory community, who develop these codes usually work in small teams
 - Recognition for technical improvements is limited/missing

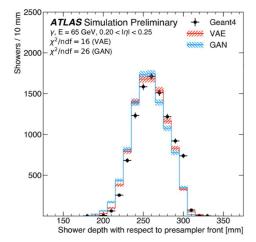




Many electroweak measurement errors dominated by theory (red). <u>B. Hinemann</u>

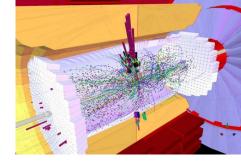
Event Generators - Technical Improvements


- <u>HSF/LPCC workshop</u> in November brought theory and experiment together to look at computing challenges of event generation
 - \circ $\;$ This was the first workshop of its kind $\;$
- <u>Working group</u> tackling technical challenges
 - Setting a baseline for further comparisons
 - \circ ~ Understanding how to run generators for best efficiency
 - Support for technical improvements (e.g. thread safety)
 - Porting to other architectures
 - Could be very suitable code to do this with (smaller, self contained code bases, numerically intensive)
 - e.g. building on the work done so far in MadGraph with GPUs


Detector Simulation

- A major consumer of LHC grid resources today
 - Experiments with higher data rates will need to more simulat
- Faster simulation, with no or minimal loss of accuracy, is the goal
 - Range of techniques have been used for a long time (frozen showers, parametric response)
 - \circ $\ \ \,$ Key point is deciding when it's good enough for physics
- Machine learning lends itself to problems like this
 - Calorimeter simulations usually targeted
 - Variational Auto Encoders (VAEs) attempt to compress the data down to a 'latent space' - can be randomly sampled to generate new events
 - Generative Adverserial Networks (GANs) train two networks, one to generate events, the other to try to classify as real/fake
 - R&D on lifecycle integration into Geant4 is starting

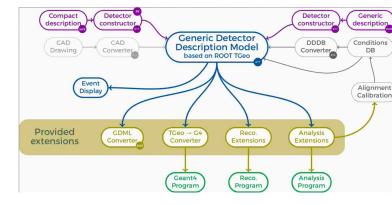
Use of Generative Adversarial Networks to simulate calorimeter showers, trained on G4 events (S. Vallacorsa)


Energy = 65 GeV

ATLAS VAE and GAN cf. Geant4 simulation [ATL-SOFT-PUB-2018-001.]

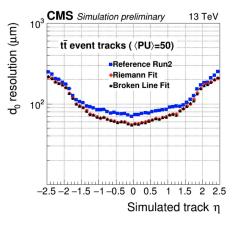
Detector Simulation

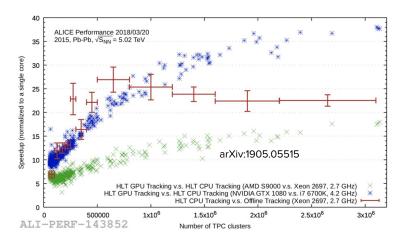
• Technical improvement programme helps (and helps everyone)


- GeantV R&D modernises code and introduces vectorisation
 - Speed-ups observed
 - Vectorisation introduces some gains
 - \circ \quad Code modernisation seems to help a lot
 - Reduce complexity and layers of object orientation
- Geant4 now have a new R&D working group that will take studies forward
- Some studies of running Geant4 on GPUs have begun
 - US Exascale Computing Project is funding this
 - \circ \quad Motivated by the next generation of US supercomputers that target exaflop
 - 90% of FLOP capacity in GPUs

DD4hep, DDG4, DDcond

- Detector description toolkit aimed at the full lifecycle of an experiment
 - Conceptualisation, Construction, Operations
- Geometry consisting of a 'tree' of detector elements, defined in a single place
 - Simulation (GDML)
 - Reconstruction geometry
 - Analysis extensions
- DDG4
 - Hooks for user actions to generate detector response
- DDcond
 - Shifts detector elements from ideal position
 - Supports IoVs efficiently without locking (allows multi-threaded reconstruction across IoVs)
- Used by ILC, CLIC, CMS, LHCb, FCC, CALICE, SCTF, CEPC

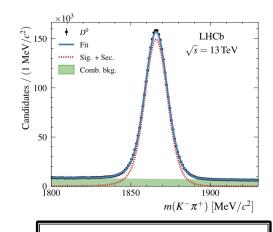




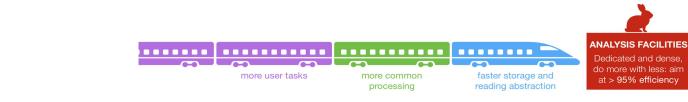
Reconstruction and Software Triggers

- Hardware triggers no longer sufficient for modern
 experiments
 - More and more initial reconstruction needs to happen in software
- Close to the machine, need to deal with tremendous rates and get sufficient discrimination
 - Pressure to break with legacy code is high
 - \circ \quad Lots of experimentation with rewriting code for GPUs
 - ALICE have ported a lot of reconstruction to GPUs and also improved the algorithms a lot
 - CMS Patatrack project has improved physics performance as well
 - Revisiting old code helps!
- Lessons learned keep data model simple, bulk data, be asynchonous, minimise data transfers

(a) d_0 resolution vs η



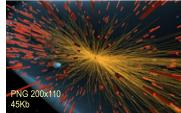
Reconstruction and Software Triggers


- Real Time Analysis (HEP Version)
 - Design a system that can produce analysis useful outputs as part of the trigger decision
 - If this captures the most useful information from the event, can dispense with raw information
 - This is a way to fit more physics into the budget
- LHCb Turbo Stream has been introduced in Run2 and will be dominant in Run3
- Whole ALICE data reduction scheme is based around keeping 'useful' parts of events (no more binary trigger)
- ATLAS and CMS have schemes under development for special handling of samples for which full raw data is unaffordable

Average event size (kB)
7
16
48
69

LHCb Run2 Turbo took 25% of events for only 10% of bandwidth

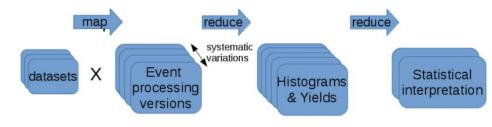
LHCb charm physics analysis using Turbo Stream (arXiv:1510.01707)



- Scaling for analysis level data also a huge challenge for all LHC experiments
- Efficient use of analysis data can come with combining many analyses as carriages in a train like model (pioneered by PHENIX then ALICE)
 - Also goes well with techniques like tape carousels (ATLAS scheme for rotating primary AOD data from tape systems into a disk buffer)
 - Interest in *analysis clusters*, specialised for analysis operations over the generic grid resources (WLCG/HSF pre-CHEP workshop 2-3 November)
- Reducing volume of data needed helps hugely
 - CMS ~1kB nanoAOD makes a vast difference to analysis efficiency and "papers per petabyte"
 - Smaller EDM is easier to make efficient

<u>Analysis</u>

- Requires analyst agreement on corrections, scale factors, etc.
 - However the alternative is perhaps that your analysis never gets done

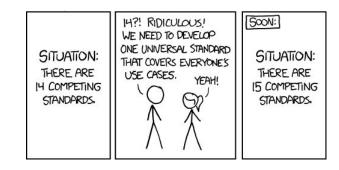


Analysis

- Improve analysis ergonomics how the user interacts with the system to express their analysis
 - Streamline common tasks
 - Handle all input datasets; Corrections and systematics
 - Compute per event and accumulate; Statistical interpretations
 - $\circ \qquad {\sf Declarative\ models,\ building\ on\ ROOT's\ RDataFrame}$
 - Say what, not how and let the backend optimise
 - E.g. split and merge, GPU execution
- Notebook like interfaces gain ground, as do containers - lots of high level Python
- Interest in data science tools and machine learning is significant for this community inspiring new approaches (e.g. uproot, awkward array, Coffea, scikit-hep)
 - \circ \quad This is an ecosystem into which HEP can contribute
 - <u>PyHEP Working Group</u> coordinates activities in this area

Many analysis frameworks, multiple per experiment, not well generalised

```
# * Jet select/cleaning against loose leptons , jet pt > 25 , jet id
flow.DefaultConfig(jetPtCut=25,jetIdCut=0,jetPUIdCut=0)
flow.SubCollection("CleanJet", "Jet", '''
Jet_pt > jetPtCut &&
Jet_jetId > jetIdCut &&
Jet_puId > jetIdCut &&
(Jet_LeptonIdx==-1 || Jet_LeptonDr > 0.3)
'''')
```



Frameworks and Integration

- Increasingly heterogeneous world requires advanced software support infrastructure
 - Software frameworks support use of different devices as well as insulate developers from many of the details of concurrency and threading models
 - Adapt to the new heterogeneous landscape
 - Latency hiding is critical to maintaining throughout
 - Framework development has traditionally been quite fragmented, but new experiments should offer a chance to increase convergence
 - Better to start off together than try to re-converge later (iLCSoft, LArSoft examples of success, albeit without concurrency; Gaudi for LHCb, ATLAS)
 - ALFA for ALICE and FAIR experiments
- New <u>HSF Frameworks Working Group</u> now established

Cartoon of a single job, processing multiple events (colours) through different modules (shapes)

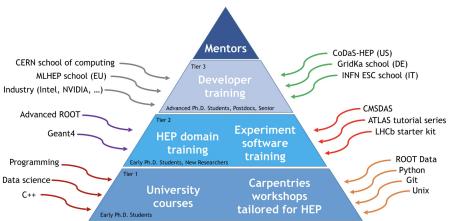
EDM4hep

- Levels of software interoperability vary from common file formats to deep framework level integration as "components"
- Sharing an EDM makes many tasks much easier
 - Common interface for algorithms
 - Serialised events easier to read when in standard format
- Very positive experience from Linear Collider community with LCIO
- We want to revisit this, in light of what has been learned in the last decade
 - EDM4hep project (GitHub, Indico)
 - LCIO + FCC EDM as basis
 - Use data model *generator* to write optimal data layouts for modern hardware
 - <u>PODIO</u>, Plain Old Data IO

Key4hep

- Build on EDM4hep to a complete *software stack* (easily 100s of packages)
- <u>HSF Packaging Group</u> has been looking at packaging issues for the community for several years
 - Problem seems naively simple, but quickly gets complex when addressing full set of use cases
 - N x M complexity (versions x build options / target platforms)
 - Reproducibility
 - Better to build deep and not depend on underlying OS
 - Relocatable binary products
 - Target: CVMFS, Containers, Local Installations
- Many possible solutions for building a *software stack* with a *build orchestrator*
 - FOSS, Scientific Community, HEP Specific, Experiment Specific

Key4hep Prototype


Picking up momentum in HEP

- used by FCC, Key4HEP, SupeNEMO
- FAIR moving to spack
- CMS has proof of concept
- ATLAS considering but things still to be understood
- LHCb and Belle II willing to follow

- Using <u>Spack</u> build orchestrator from LLNL
 - Fulfils our use cases, strong scientific package support, good developer dialogue
- Building on work done to provide FCC and SuperNEMO stacks with Spack
- Prototype stack covering main use cases, from event generation to analysis
 - Spack first builds its own compiler (currently gcc9.2.0), for full self-consistency
 - Key top level packages:
 - Pythia, Geant4, DD4hep, Gaudi, ROOT
 - Use Spack's packages.yaml to set reproducible build options
 - Binary packages uploaded to build cache for deployment to CVMFS
 - Relocation via RPATH manipulation of libraries and binaries, configuration sed-iting
 - Runtime setup via standard module system

Training and Careers

- Many new skills are needed for today's software developers and users
- Base has relatively uniform demands
 - Any common components help us
- LHCb StarterKit initiative taken up by several experiments, sharing training material
 - Links to 'Carpentries' being remade and to Astroparticle training events (ESCAPE project)
 - Software Carpentry training event at CERN, 27-29 November
- New areas of challenge
 - Concurrency, accelerators, data science, evolving C++ requirements
- Careers area for HEP software experts is an area of great concern
 - Need a functioning career path that retains skills and rewards passing them on
 - Recognition that software is a key part of HEP now

Summary and Outlook

- There is a continuing active R&D programme for software in HEP
 - Much activity in all experiments and in support groups, such as EP-SFT
 - New support from initiatives like IRIS_HEP in the US
- Increasingly well linked to end-to-end systems that run our production at scale
- HSF plays a prominent role in developing cross experiment communication in key areas
 - Working groups are open to all experiments and nominations for convenors to take a leadership role are welcome
- Links between the LHC experiments and future growing stronger

We welcome future collaboration and engagement with CEPC colleagues