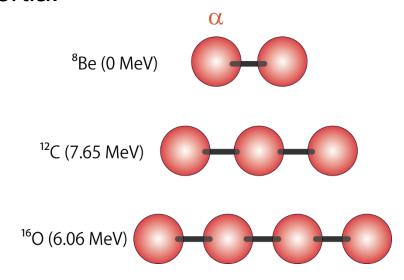
Nuclear Astrophysics with low-energy RI beams

Lecture by
Hidetoshi Yamaguchi
山口英斉

from

Center for Nuclear Study (CNS), the University of Tokyo/ National Astronomical Observatory of Japan

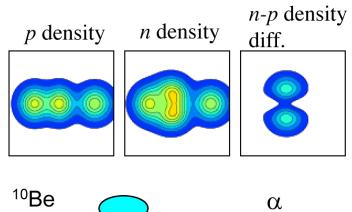

NUSYS@Lanzhou

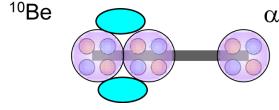
Lecture #3

- ¹¹Be+α and linear chain with TTIK (continued)...main interest on nuclear cluster structure
- Trojan Horse Method (THM)
 - ◆How it works
 - ◆¹8F(p,α) S. Cherubini et al., Phys. Rev. C (2015)...The first THM+RI beam experiment in the world
 - ◆⁷Be(n,p) and (n,α) for cosmological ⁷Li abundance problem
- r-process study at RIKEN RIBF

Morinaga (1956) and linear chain

- Discussed on 4n-nuclei based on the alpha particle model
- Predicted linear-chains in ¹²C, ¹⁶O, etc., from their high momenta of inertia.

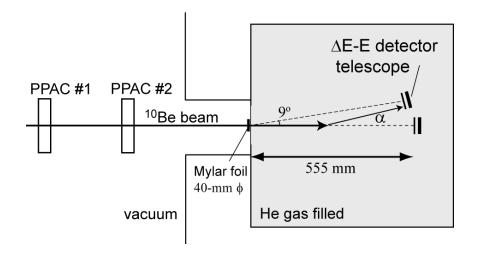

 It was shown in later studies that the Hoyle state is NOT a linear-chain state.


10 Be+ α

- Linear-chain cluster levels in ¹⁴C were predicted in Suhara & En'yo papers.
- Asymmetric, ¹⁰Be+α configuration
 …likely to be observed with ¹⁰Be+α
 alpha-resonant scattering.
- May form a band with $J^{\pi}=0^+,2^+,4^+$ a few MeV above α -threshold.
- Scattering of two 0⁺ particles...only
 l-dependent resonant profile.

Similar experiments independently conducted by Birmingham group [M. Freer et al., PRC 2014] and MSU group [A. Frisch et al., PRC 2016]

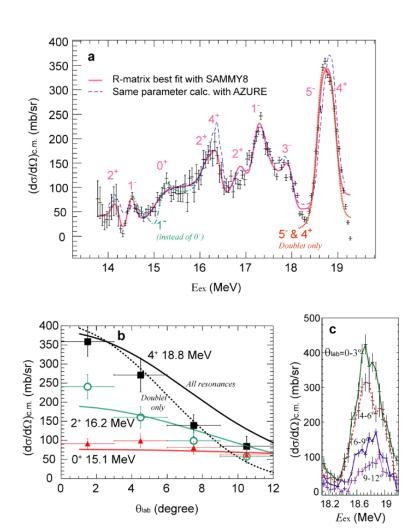
Suhara & En'yo, PRC 2010 and 2011:

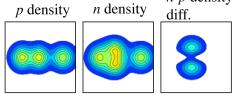

Cluster bands

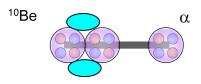
 Predicted energy...few MeV above the ¹⁰Be+α threshold

H. Yamaguchi@NUSYS2019

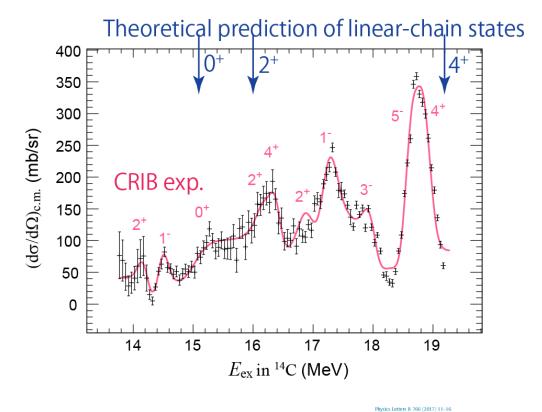
Experimental setup


Thick target method in inverse kinematics, similar to the previous ${}^{7}\text{Be}+\alpha$.


- •Two PPACs for the beam PI, trajectory, number of particles.
- •Two silicon detector telescopes for recoiling α particles.
- • E_{cm} and θ obtained by event-by-event kinematic reconstruction.


Excitation function

- The excitation function we obtained for 13.8-19.2 MeV exhibits many resonances.
- R-matrix analysis performed, and some of the resonance parameters (E, J^{π} , Γ_{α}) were determined.



Result of the linear chain search

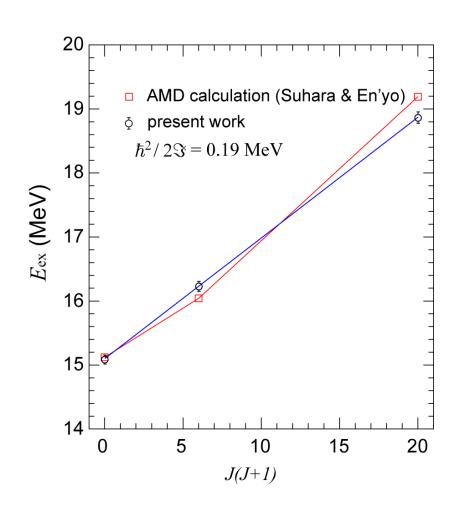
Excellent agreement between exp. and theory for the (0+, 2+, 4+) states.

Contents lists available at ScienceDirect

Physics Letters B

www.elsovier.com/locate/physletb

Experimental investigation of a linear-chain structure in the nucleus $^{14}\mathrm{C}$



H. Yamaguchi^{a,*}, D. Kahl^{a,b}, S. Hayakawa^a, Y. Sakaguchi^a, K. Abe^a, T. Nakao^{a,c}, T. Suhara^d, N. Uwasa^e, A. Kim^{f,g}, D.H. Kim^g, S.M. Cha^f, M.S. Kwag^f, J.H. Lee^f, E.J. Lee^f, K.Y. Chae^f, Y. Wakabayashiⁿ, N. Imai^a, N. Kitamura^a, P. Lee^f, J.Y. Moon^{j,k}, K.B. Lee^j, C. Akers^j, H.S. Jung^k, N.N. Duy^{l,m}, L.H. Khiem¹, C.S. Lee^j

Rotational Band

The set of resonances we observed (0+, 2+, 4+) is proportional to J(J+1) ... consistent with a view of rotational band.

Also perfectly consistent with the theoretical prediction.

Experiments in other facilities

Results on two other 10 Be+ α TTIK experiments were published before our publication was made.

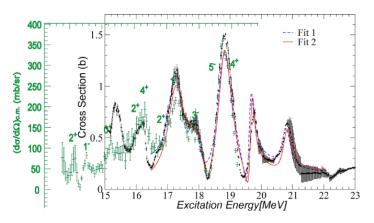
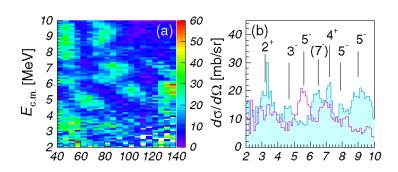
- M. Freer et al., Phys. Rev. C (2014)
 Birmingham group+ at ORNL
 - High-intensity ¹⁰Be beam, spectrum at very forward angle, no PI

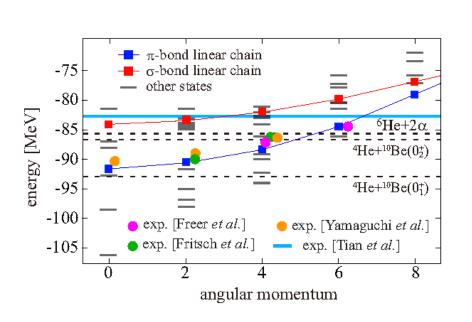
Agreement over Ex>16 MeV, in spite of the difference in the absolute c.s.

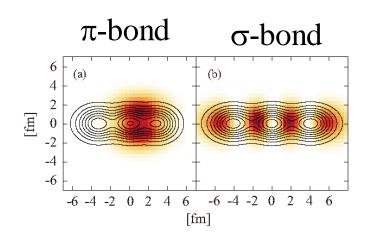
- A. Fritsch et al., Phys. Rev. C (2016)
 MSU group at Notre Dame
 - Low-intensity ¹⁰Be beam, Active target, only side angles.

Cannot compare directly, but not good agreement?

H. Yamaguchi@NUSYS2019


FIG. 11. (Color online) R-matrix fit to the data in the region between $E_x = 16.5$ and 22 MeV (red-solid and blue-dashed lines). The difference between the two fits is the inclusion of an additional 4^+ state in the calculation shown by the red line. See Tablefor the parameters of fits 1 and 2.



 $E_{cm}=E_x-12 \text{ MeV}$

Baba and Kimura (2016 & 2017)

PHYSICAL REVIEW C 95, 064318 (2017)

Another AMD calculation,

" π -bond" linear chain band, consistent with 3 experiments " σ -bond" linear chain band at higher energy (studied by Peking Univ. group).

How certain are the linear-chain states?

- Identification of the 0⁺ state...1⁻ was excluded with 3σ significance, but the error can be systematic.
 - ◆Limited statistics and angular range
 - ◆Background subtraction
 - ◆Inelastic scattering?
- We planned the 4th experiment at INFN-LNS (Catania, Italy):
 - ◆With offline-production ¹⁰Be beam
 - ◆Inelastic scattering separation with TOF.

⇒ Performed in Oct., 2018.

The "CHAIN" experiment at INFN-LNS (Catania, Italy)

¹⁰Be+α with more intense beam, higher energy and angular resolution: ~2 weeks beamtime.

Investigation of α -chain structures in ¹⁴C.

H. Yamaguchi ¹, A. Di Pietro², R. Dressler³, J. P. Fernández-García⁴, P. Figuera², S. Hayakawa¹, S. Heinitz³, D. Lattuada⁵, M. Lattuada^{2,6}, E. Maugeri³, M. Milin⁷, H. Shimizu¹, A. C. Shotter⁸, D. Shumann³, N. Soic⁹, D. Torresi², L. Yang¹ M. Zadro⁹,

¹ Center for Nuclear Study (CNS), University of Tokyo, RIKEN, Wako, Japan

² INFN, Laboratori Nazionali del Sud, Catania, Italy

⁴ Paul Scherrer Institute, Villigen, Switzerland

³ Departamento FAMN, Universidad de Sevilla, Sevilla, Spain.

 $^5\ Extreme\ Light\ Infrastructure\ -\ Nuclear\ Physics\ (ELI-NP), IFIN-HH,\ Magurele,\ Romania$

⁶ Dipartimento di Fisica e Astronomia, Catania, Italy

⁷Physics Department, Faculty of Science, University of Zagreb, Zagreb, Croatia

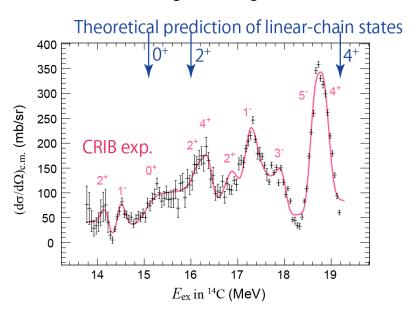
 8 School of Physics and Astronomy, University of Edinburgh, UK

⁹ Ruđer Bošković Institute, Bijenička, Zagreb, Croatia

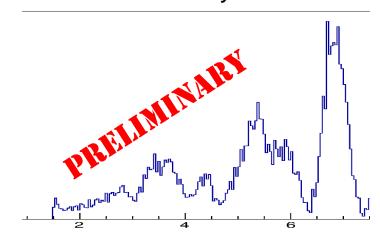
Abstract

We propose to measure the excitation function for the elastic scattering process 10 Be+ 4 He, in order to shed some light upon the existence of linear-chain cluster states in the n-rich 14 C nucleus. These states are expected to have a configuration in which 10 Be and α are spatially separated, and thus they can be observed by the 10 Be+ α resonant elastic scattering. In order

Experiment at Catania, Oct. 2018



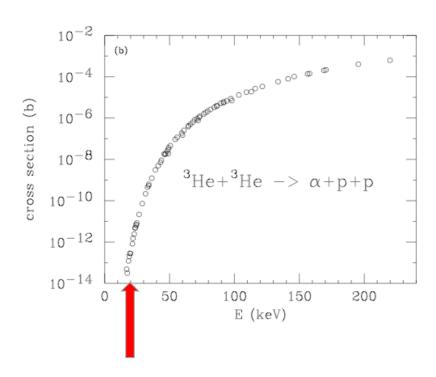
Result (very preliminary)


CRIB vs

LNS(Tandem)

Including 0-8 deg events

@5 deg, No normalization for the effective target thickness/absolute cross section yet



Need of indirect method

Stellar reaction cross section often has a strong dependence on energy (or temperature), changing by orders of magnitude.

...This is because of the tunneling probability of the Coulomb barrier.

Experimentally, this causes much trouble. We need a clever way.

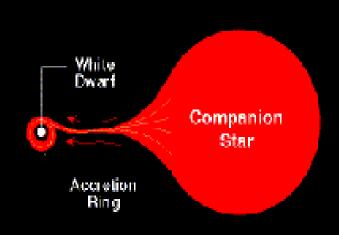
Gamow energy of Solar T

The Trojan Horse Method(THM) Barrier p (low-E) p (low-E) in d (high-E) Barrier When the horse (neutron) does nothing significant in the castle (nucleus), the reaction can be called as a "quasi-free" reaction.

The $^{18}F(p,\alpha)$ project (with THM)

- ¹⁸F(p,α)... an astrophysical reaction important in novae, and other high-T environments.
- Measurement with the Trojan Horse Method performed in 2008
 ...The first THM+RI beam experiment in the world.
- The RI Beam at CRIB (after development):

Primary beam: ¹⁸O ⁸⁺, 4.5-5 MeVA

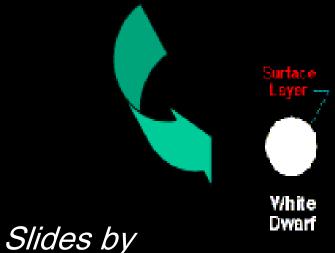

Production target: H₂

Production reaction: ¹⁸O(p,n)¹⁸F

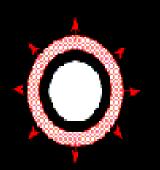
- ◆ Purity nearly 100%
- ightharpoonup Intensity > 5 x 10⁵ pps

A NOVA MICKEY MOUSE PICTURE AND $^{18}F(p,\alpha)^{15}O$

Ьÿ


Thin hydrogen surface layer accumulated on white dwarf through accretion ring

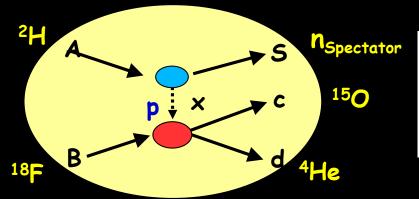
S. Cherubini

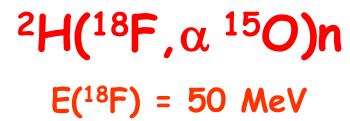

Observed y- rays come from e teet come from ¹⁸F decay mostly

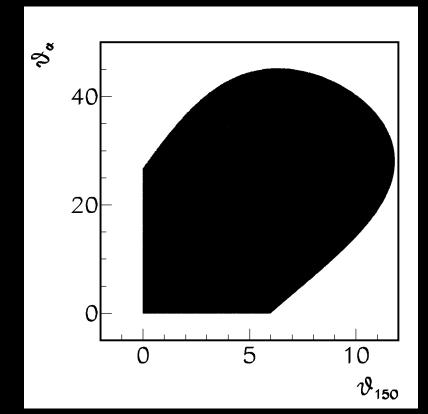
At novae temperatures (100-500 keV) ¹⁸F can be mainly destroyed

 $^{18}F(p,\alpha)^{15}O$

Ignition of surface layer under degenerate conditions Thermonuclear runaway until degeneracy lifted

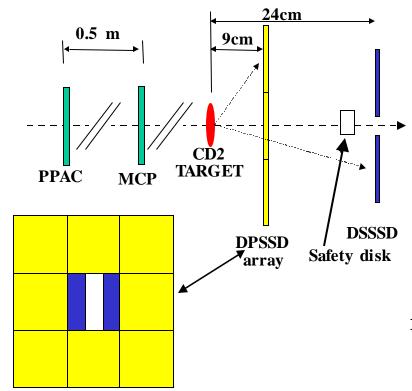


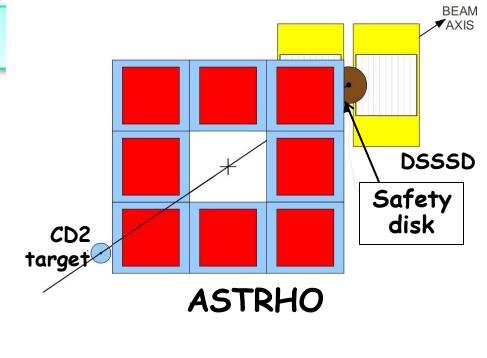

Explosive Burning of Hydrogen Shell


For the star energetics this is peanuts!


THM measurement: ${}^{18}F(p,\alpha){}^{15}O$ via ${}^{2}H({}^{18}F,\alpha{}^{15}O)n$

Kinematics





EXPERIMENTAL SETUP

PPAC

ASTRHO: Array of Silicons for TRojan HOrse

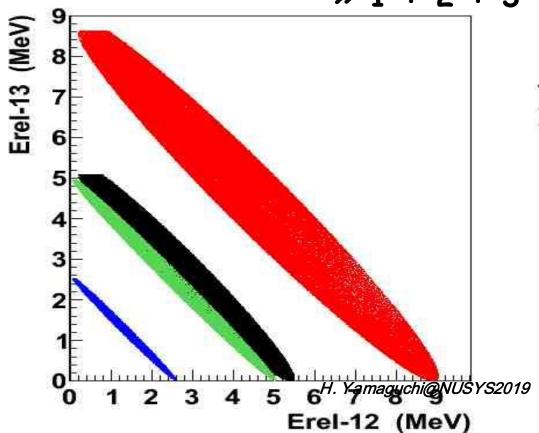
Beam track reconstruction

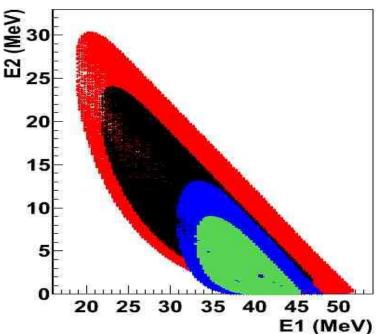
PPAC

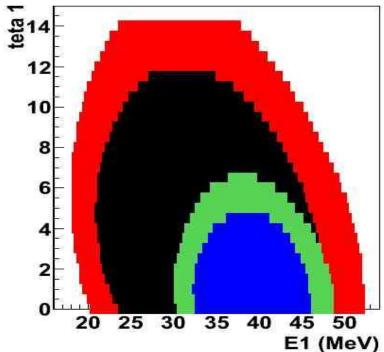
CD2

H. Yamaguchi@NUSYS2019

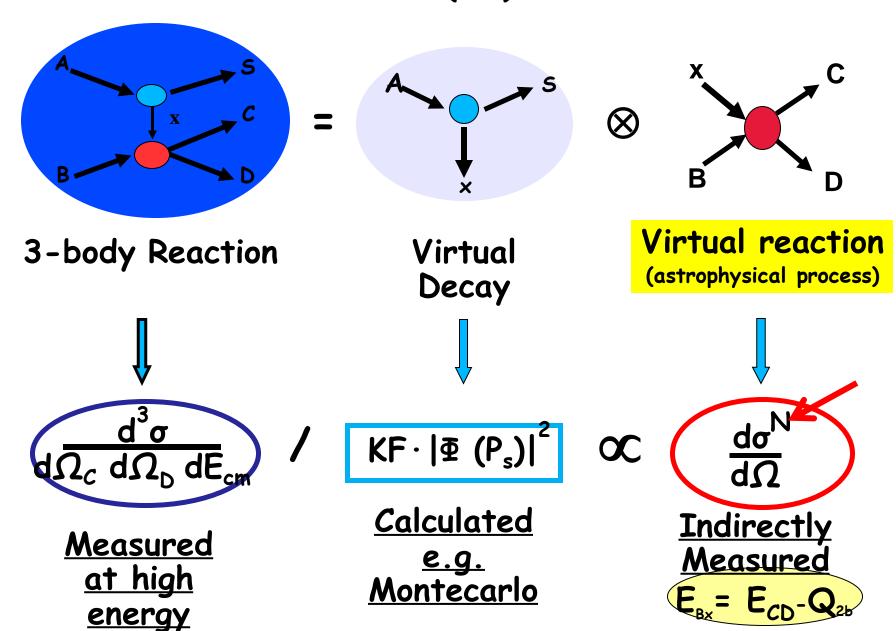
EVENT SELECTION

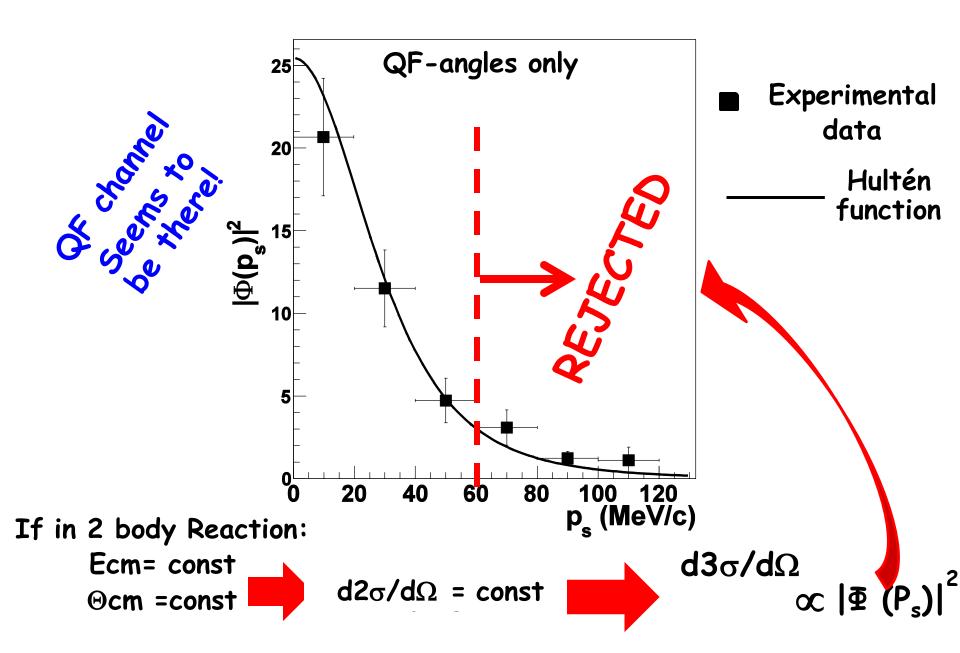

Red: ${}^{18}F + d \rightarrow {}^{15}N + \alpha + p$

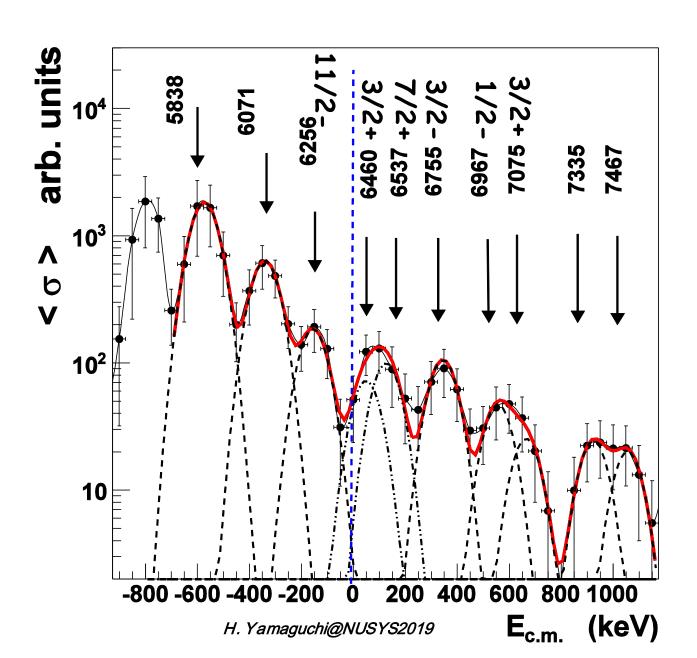

Black: $^{18}F + d \rightarrow ^{15}O + \alpha + n$

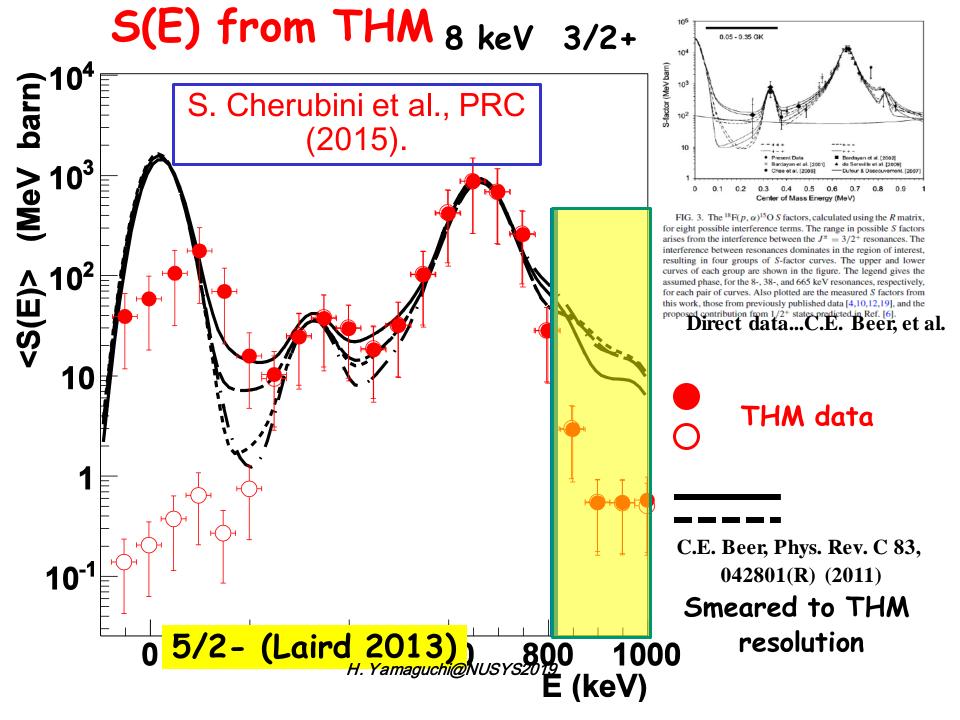

Blue: ${}^{18}F + d \rightarrow {}^{18}F + p + n$

Green: ${}^{18}F + d \rightarrow {}^{18}O + p + p$


> 1 + 2 + 3




Assuming that a Quasi-free mechanism is dominant one can use the (PW)IA:



EXPERIMENTAL IMPULSE DISTRIBUTION

THM(=barriers free) CROSS SECTION

⁷Be(n,p)⁷Li and the ⁷Be(n,α)⁴He reactions with THM for cosmological lithium problem

S. Hayakawa¹, M. La Cognata², L. Lamia², H. Shimizu¹, L. Yang¹, H. Yamaguchi¹, K. Abe¹, O. Beliuskina¹, S. M. Cha⁴, K. Y. Chae⁴, S. Cherubini^{2,3}, P. Figuera^{2,3}, Z. Ge⁵, M. Gulino^{2,6}, J. Hu⁷, A. Inoue⁸, N. Iwasa⁹, D. Kahl¹⁰,

A. Kim¹¹, D. H. Kim¹¹, G. Kiss⁵, S. Kubono^{1,5,7}, M. La Commara^{12,13}, M. Lattuada^{2,3}, E. J. Lee⁴, J. Y. Moon¹⁴,

S. Palmerini^{15,16}, C. Parascandolo¹³, S. Y. Park¹¹, D. Pierroutsakou¹³, R. G. Pizzone^{2,3}, G. G. Rapisarda²,

S. Romano^{2,3}, C. Spitaleri^{2,3}, X. D. Tang⁷, O. Trippella^{15,16}, A. Tumino^{2,6}, P. Vi⁵ and N. T. Zhang⁷

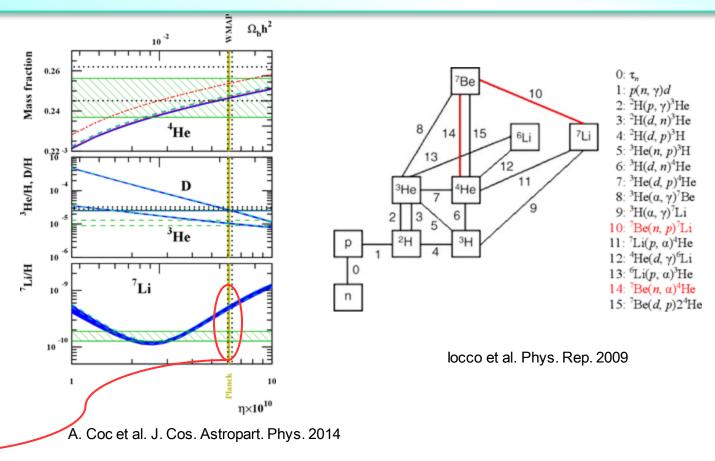
¹Center for Nuclear Study (CNS), University of Tokyo, ²INFN - Laboratori Nazionali del Sud,

³University of Catania, ⁴Sungkyunkwan University, ⁵RIKEN Nishina Center, ⁶Kore University of Enna,

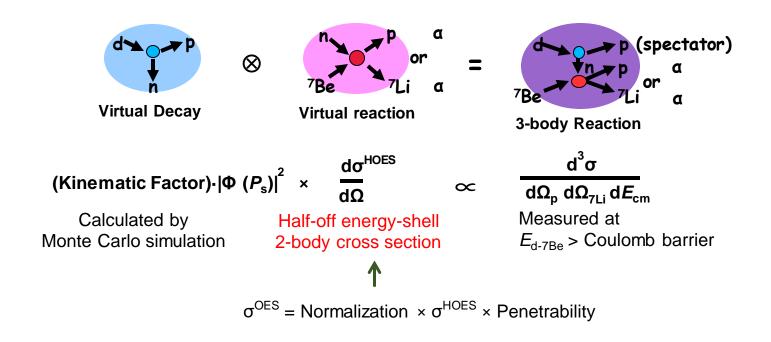
⁷Institute of Modern Physics, Chinese Academy of Sciences, ⁸Research Center for Nuclear Physics (RCNP), Osaka University, ⁹Tohoku University, ¹⁰University of Edinburgh, ¹¹Ewha Womans University,

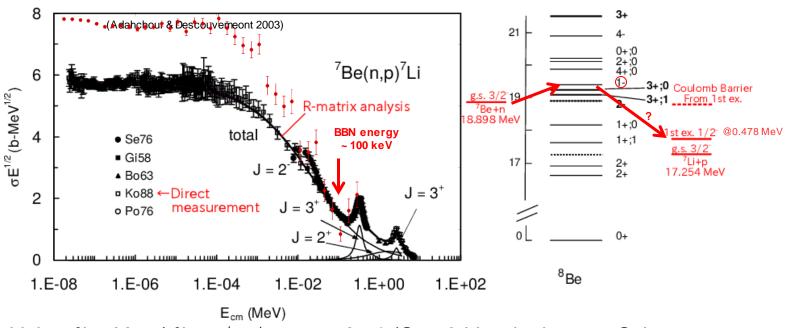
¹²University of Naples Federico II, ¹³INFN – Naples, ¹⁴Institute for Basic Science (IBS),

•15INFN - Perugia, ¹⁶University of Perugia



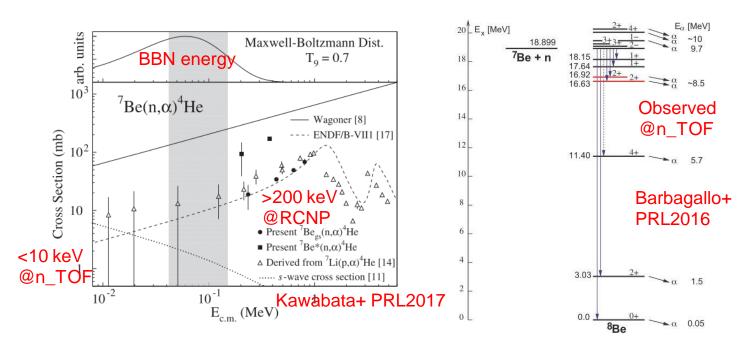
+ many others


Cosmological ⁷Li problem


- ⁷Li problem... disagreement between theory and observation by a factor of 3-4
 - Due to CMB obs.? Low-metallicity stars obs.? Standard BBN model? Nuclear Physics?
 - ⁷Be abundance in the end of BBN determines ⁷Li predominantly
 - $p(n,\gamma)d$, ${}^{3}\text{He}(d,p){}^{4}\text{He}$, ${}^{7}\text{Be}(n,p){}^{7}\text{Li}$, ${}^{7}\text{Be}(n,\alpha){}^{4}\text{He}$, ${}^{7}\text{Be}(d,p)2\alpha$, etc.
- Temperature ~ 10¹⁰ 3 × 10⁸ K, Energy: 1 MeV 25 keV

Trojan Horse Method for RI + neutron

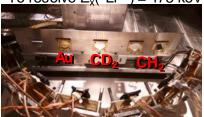
- Trojan Horse method: (Spitaleri+ Phys. Atom. Nucl. 2011)
- ${}^{7}\text{Be}(n,p){}^{7}\text{Li}$, ${}^{7}\text{Be}(n,\alpha){}^{4}\text{He}$ via ${}^{2}\text{H}({}^{7}\text{Be},{}^{7}\text{Lip}){}^{1}\text{H}$, ${}^{2}\text{H}({}^{7}\text{Be},\alpha\alpha){}^{1}\text{H}$
- PWIA applicable when Quasi-free mechanism is dominant



7 Be(n, p) 7 Li (Q = 1.644 MeV)


- Sensitivity: $\partial \log Y_{7Li} / \partial \log \langle \sigma v \rangle_{7Be} = -0.71$ (Coc & Vangioni 2010, Cyburt+ 2016, etc.) If $5 \times \text{higher rate} \Rightarrow {}^{7}\text{Li problem solved}$
- Direct measurement up to 13.5 keV, time-reversal reactions at higher energies.
- R-matrix analysis: Adahchour & Descouvement 2003.
- New n_TOF measurement: enhancement below BBN energies (Damone+ PRL 2018)

⁷Be(n, α)⁴He (Q = 18.990 MeV)

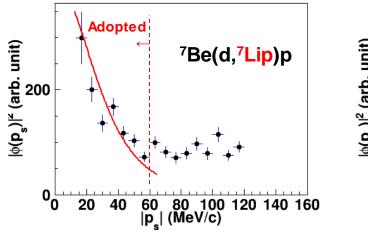

- Hou et al. PRC 2015: evaluation from ${}^{4}\text{He}(\alpha,p){}^{7}\text{Li}$
- Barbagallo et al. PRL 2016: s-wave measurement @ nTOF
- Kawabata et al. PRL 2017: p-wave measurement @RCNP
- Lamia et al. APJ 2017: evaluation of ⁷Li(p,α) data measured by THM.
- Recent works consistent... Yet no direct data in the BBN range.

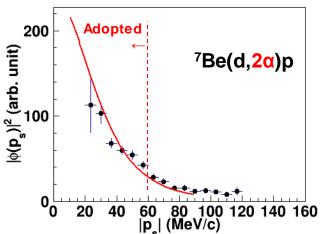
Experimental setup

- 6 ΔE-E position sensitive silicon telescopes
- ⁷Li-p and α-α coincidence measurements
- ... spectator not measured

- CD₂: 64 μg/cm²
- → $\Delta E_{\text{beam}} \sim 150 \text{ keV}$
- \rightarrow To resolve $E_x(^7Li^{1st}) = 478 \text{ keV}$

 Hamamatsu Charge-division PSD: position resolution ~ 0.5 mm



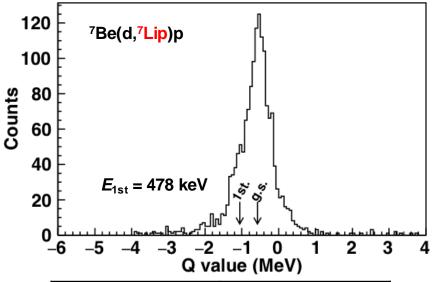

→ Total angular resolution (PPACs & PSDs & alignment)

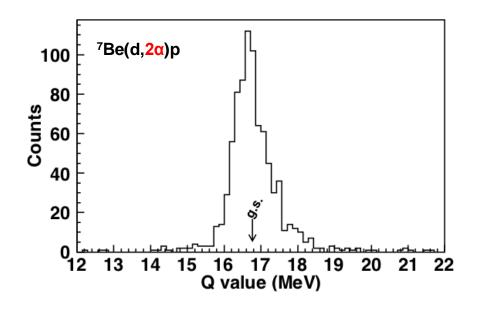
$$\sim 0.5^{\circ} \rightarrow \Delta E_{cm} \sim 60 \text{ keV}$$

Momentum distributions of the spectator *p*

$$Y_{\text{exp}}/Y_{\text{sim}} \propto d^3\sigma/(d\Omega_{\text{p}}d\Omega_{7\text{Li}}dE_{\text{cm}}) / \text{KF} \propto |\Phi(\rho_{\text{s}})|^2 d\sigma/d\Omega$$

 $\sim |\Phi(\rho_{\text{s}})|^2 \text{ at a fixed } E_{\text{c.m.}} \text{ and } \theta_{\text{c.m.}} \iff 2\text{-body cross section is const.})$

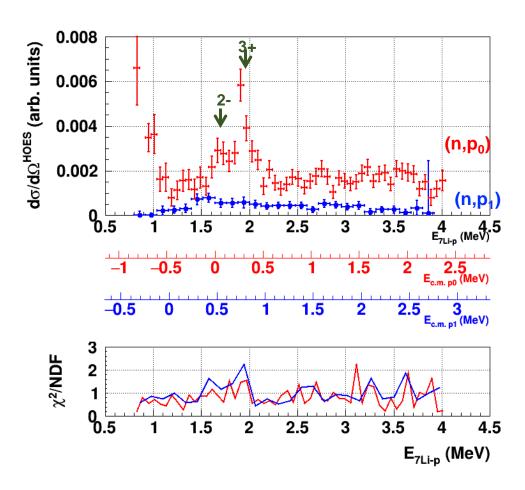



Hulthén function in momentum space for p-n intercluster motion (PWIA app.)

Good agreement up to 60 MeV/c Evidence that quasi-free contribution is dominant.→ THM is valid!

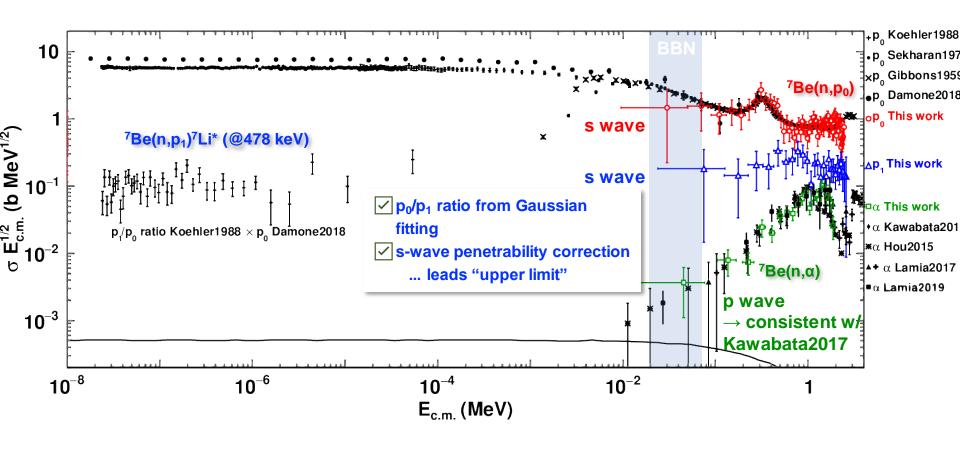
Q-value spectra of the 3-body channels

Reaction	Q-value (MeV)
<i>p</i> +2α	16.766
⁷ Li+2 <i>p</i>	-0.589
⁷ Be+ <i>n</i> + <i>p</i>	-2.225
⁵ He+ <i>p</i> + ³ He	-4.547

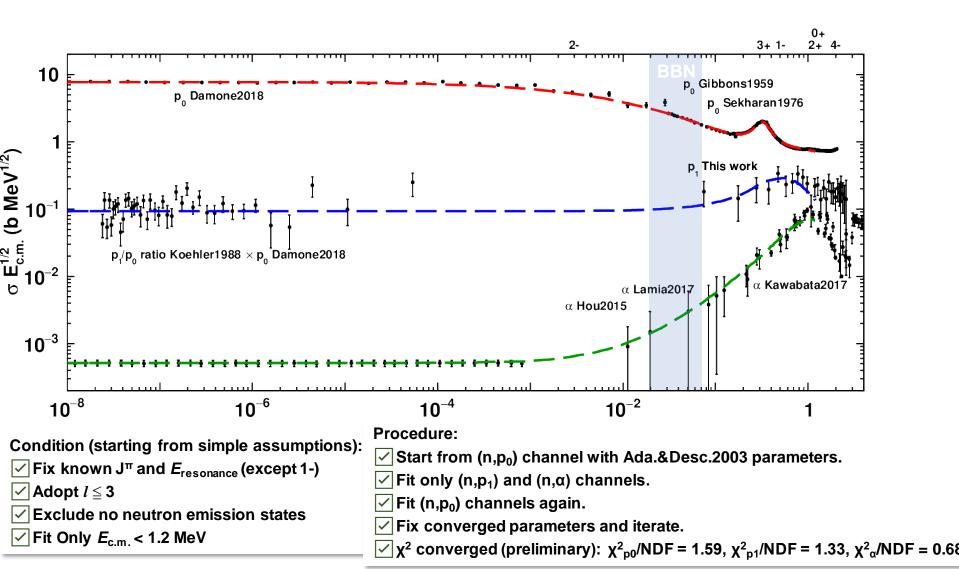


$$Q_{3\text{body}} = E_1 + E_2 + E_3 - E_{\text{beam}}$$

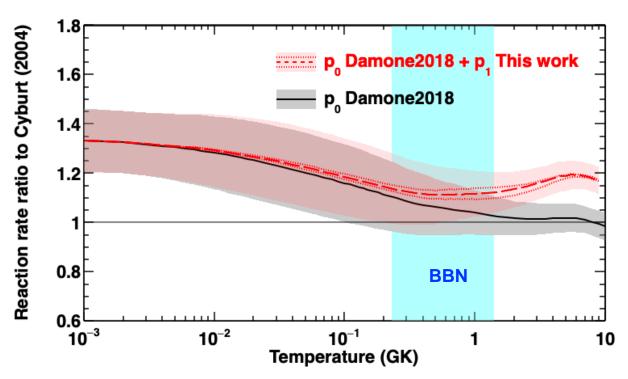
$$\Delta Q_{3\text{body}} \sim \sqrt{(\Delta E_1^2 + \Delta E_2^2 + \Delta E_3^2 + \Delta E_{\text{beam}}^2)}$$


$$\sim 200 \text{ keV expected} \text{ with 64 µg/cm}^2 \text{ CD}_2$$

Gaussian fitting to Q-value spectra



- Isotropy assumed (as no strong angular dependence seen)
- Checked systematic change of widths & peaks
 - → Reduces errors


7 Be(n,p₀), (n,p₁) & (n, α_0) cross sections by CRIB

(Preliminary) R-matrix fitting by AZURE2

Revised ⁷Be(n,p) Reaction rate

n_TOF result (Damone+ PRL2018):

- ~ 5% higher rate in BBN range
- → 96% ⁷Li abundance

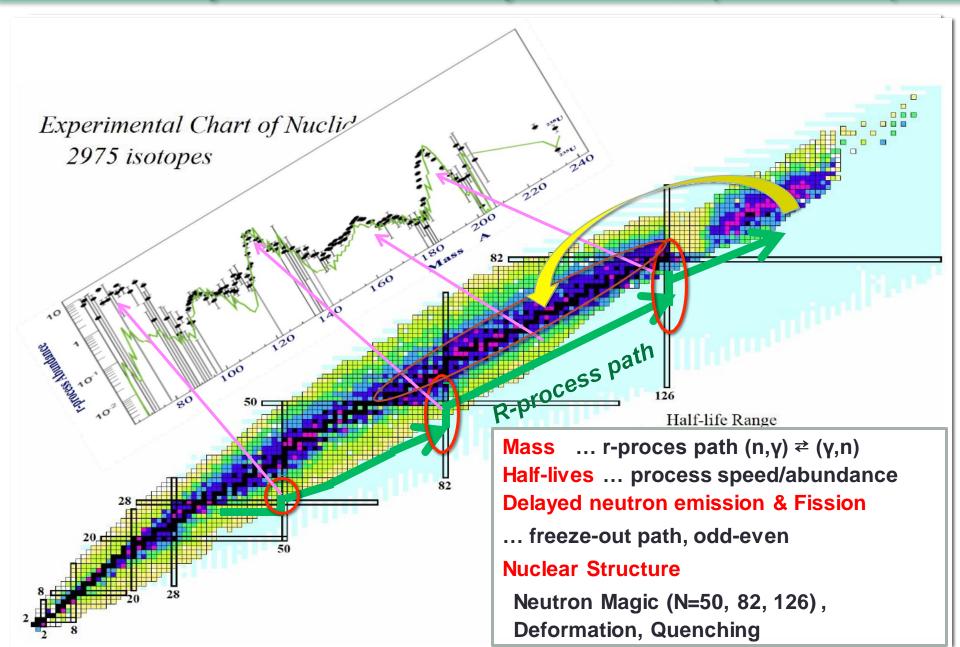
This work:

- ~ 15±15% higher rate (preliminary)
- ⇒ ~ 90% ⁷Li abundance (preliminary) (with the sensitivity $\partial \log Y_{7Li} / \partial \log \langle \sigma v \rangle_{7Be} = -0.71$)

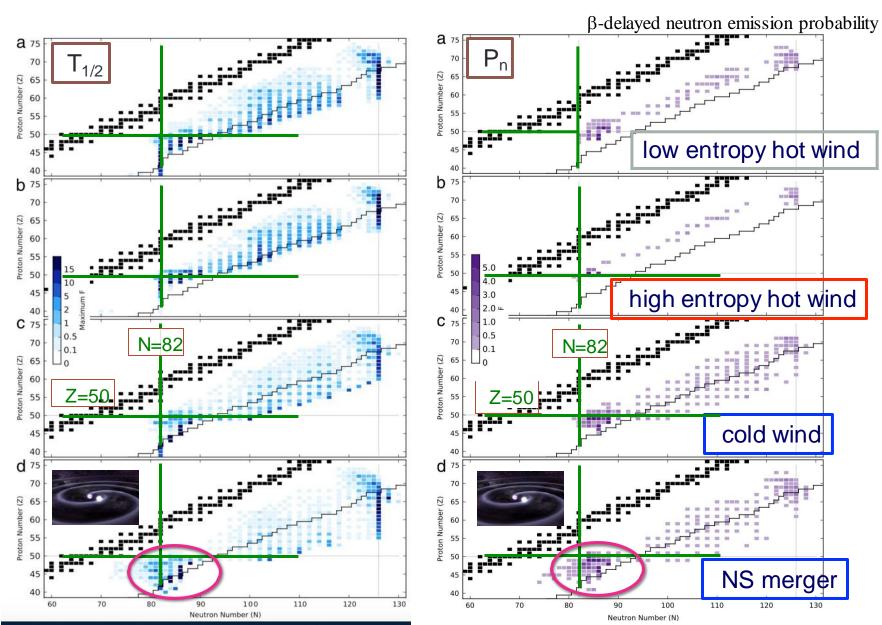
Recent ⁷Be+d work @ FSU (Rijal+ PRL122, 182701 (2019)):

Resonance of (d,α) channel just in BBN Gamow window

→ ~ 87% ⁷Li abundance

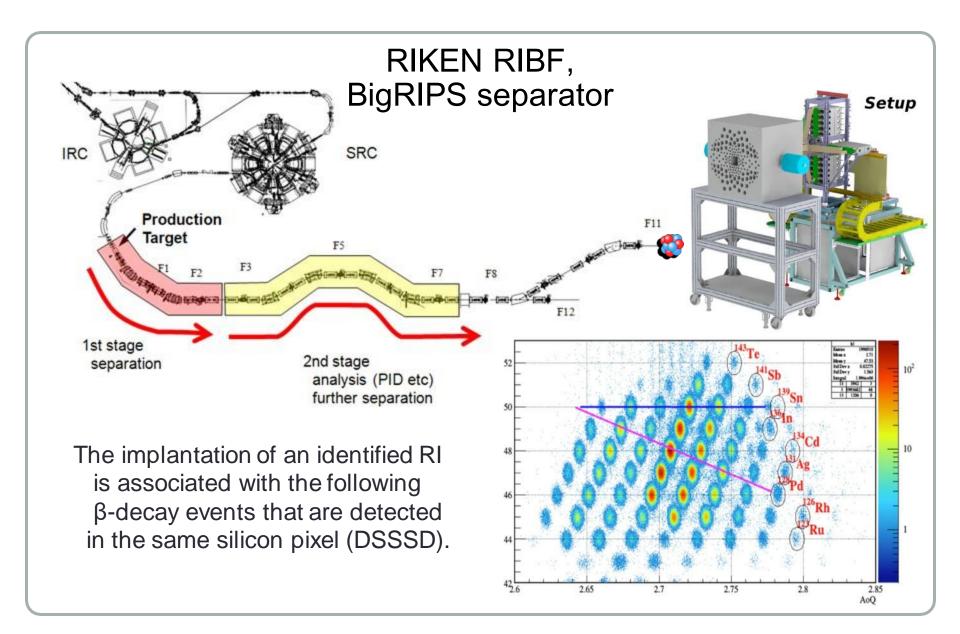

Considering (n_TOF + CRIB) x FSU

→ ~ 80% ⁷Li abundance

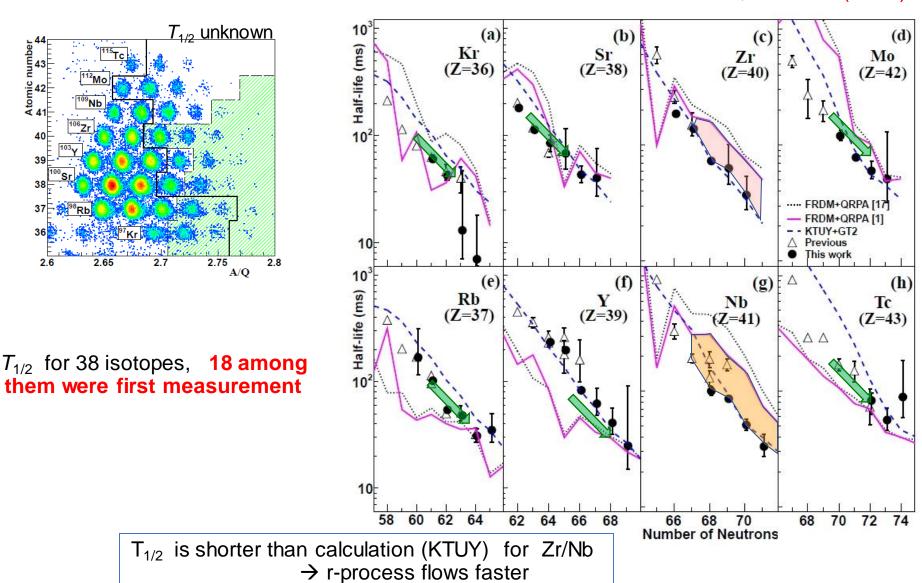

How to study r-process experimentally?

- r-process path nuclei...very neutron rich, still hard to study
- RIKEN RIBF can produce some of them, but not with a high intensity (i.e. too few to make a reaction study)
 - → What we can do first is to study the basic properties of nuclei, such as mass and lifetime.

Nucleosynthesis of Heavy Elements (r-Process)



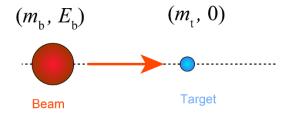
Sensitivity study of decay properties in r-process


M.R. Mumpower et al. (2016)

Beam Production & DecayStation

Nishimura et al. PRL106, 052502 (2011)

2019


Summary

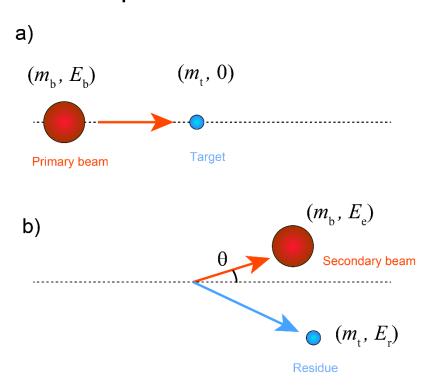
- Experimental information is essential for understanding stars and other phenomena in the universe
- Study on astrophysical reactions with (low-energy) RI beams: Not easy, but possible for some cases. Successful cases:
 - Direct measurement (for large cross section reaction)
 - Resonant scattering to study resonances (with TTIK)
 - Indirect methods (such as THM and Coulomb dissociation)
 - Mass/lifetime measurements
- CRIB at CNS, the University of Tokyo, providing unique lowenergy (<10MeV/u) RI beams...we welcome new collaborators and new ideas.

http://www.cns.s.u-tokyo.ac.jp/crib/crib-new/

Homework (In-flight RI beam)

[1] A 7 Be beam is created by the in-flight method, using a 7 Li beam (mass: M_{b}) at an energy of E_{b} and a hydrogen (Mass M_{t}) target. How much is the maximum angle deviation of the produced 7 Be particle from the original 7 Li beam trajectory?

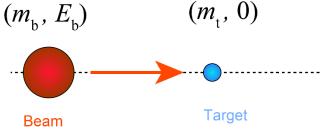
For simplicity, you can assume


- -The maximum angle deviation occurs when $\theta_{c.m.}$ is close to 90°.
- -Q-value in the production reaction (p,n) is negligible. (7 Li/ 7 Be masses are the same.)
- -The energy loss in the target is ignorable.

Hint) You can use the formula,
$$\cos\theta_{\text{lab}} = \frac{x + \cos\theta_{\text{c.m.}}}{\sqrt{1 + x^2 + 2x\cos\theta_{\text{c.m}}^2}}$$
, $x = \frac{M_b}{M_t}$

Homework

[2] When the ⁷Li beam energy is $E_{\rm b}$ = 10MeV/u (~70 MeV) and ⁷Be produced with the angle $\theta_{\rm lab}$ < 3° is accepted, how much is the energy spread $\triangle E_{\rm e}/E_{\rm e}$? Here we define $\triangle E_{\rm e}$ as the energy difference of the ⁷Be beam particle at 0° and 3°.


Hint) Consider energy -momentum conservation.

Homework (TTIK)

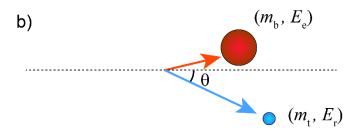
[1] Suppose we make a scattering experiment by irradiating a beam (kinetic energy E_b , mass M_b) onto a target (Mass M_t). Show that the center-of-mass energy $E_{c.m.}$ (energy of the system in the center-of-mass frame) at the scattering is given by the following formula for non-relativistic energy:

$$E_{\text{c.m.}} = \frac{M_{\text{t}}}{(M_{\text{b}} + M_{\text{t}})} E_{\text{b}}$$

Hint) In c.m. frame, the sum of the momentum vectors will be zero.

Note) This result implies that the $E_{c.m.}$ resolution can be better than the uncertainty of the beam energy in the inverse kinematics condition, $M_b > M_t$.

Homework


[2] In the resonant scattering experiments in inverse kinematics, we measure the energy and the angle of the recoiling ion, $E_{\rm r}$ and θ . First we consider a thin-target case, where the energy loss in the target is negligible.

Assuming the particle masses and the beam energy $E_{\rm b}$ are known, how do you obtain the $E_{\rm c.m.}$ of the scattering events from the measured quantities?

a) Before scattering

 $(m_{\rm b}, E_{\rm b})$ $(m_{\rm t}, 0)$ Beam Target

b) After scattering

Homework

[3] How the formula can be modified when we use a thick-target in which the beam energy is significantly degraded. (Can we still obtain $E_{\text{c.m.}}$ from the measured E_{r} and θ ?)

[4] What are the advantages and disadvantages of the TTIK (thick-target in inverse kinematics) method, as compared to the traditional, normal kinematics method?