D. BAZIN NATIONAL SUPERCONDUCTING CYCLOTRON LABORATORY MICHIGAN STATE UNIVERSITY

ION OPTICS: LECTURE 1

CONTENTS

Lecture 1

- Part 1: basics and definitions
- Part 2: methods and instruments based on Ion Optics

Lecture 2

- Part 1: tools and live demos
- Part 2: real life Ion Optics

PART1: BASICS AND DEFINITIONS

- What is the purpose of Ion Optic?
- Manipulate charged particles (not just ions!)
 - Bunching and acceleration
 - Transport and separation
 - Measure properties to realize experiments

MATRIX NOTATION

- Propagation of a straight ray
 - $x_2 = x_1 + (z_2 z_1) \times \tan \alpha_1$
 - $y_2 = y_1 + (z_2 z_1) \times \tan \beta_1$
- In transfer matrix notation

•
$$\begin{bmatrix} x_2 \\ \tan \alpha_2 \end{bmatrix} = \begin{bmatrix} 1 & \ell \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ \tan \alpha_1 \end{bmatrix}$$

•
$$\begin{bmatrix} y_2 \\ \tan \beta_2 \end{bmatrix} = \begin{bmatrix} 1 & \ell \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ \tan \beta_1 \end{bmatrix}$$

Fig. 1.1. Deviations of a light ray from the optic axis in a drift length $l = z_2 - z_1$.

H. Wollnik, Optics of charged particles, Academic Press, INC (1987)

COORDINATE SYSTEM & TRANSFER MATRIX

- Six-dimensional coordinate system
 - Necessary to fully describe the motion of particles in 3D space
 - Geometrical dimensions used on perpendicular axises (x and y)
 - Momentum (energy) dimensions used on longitudinal axis (z)
- Full matrix of a drift space of length ℓ
- Also called Transfer matrix

D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

• $\delta = \Delta p/p$ momentum difference

INTERPRETATION OF MATRIX ELEMENTS

- Restricted general matrix
 - Momentum conserving
 - No cross horizontal/vertical elements
- Magnifications: diagonal elements
- Dispersions: last column

Focussing: off-diagonal elements

D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

 $egin{array}{c} x \\ a \\ y \\ b \\ l \\ \delta \end{array}$

6 X \mathcal{O} V (x/x)0 0 (x/δ) 0 (x/a) $\mathbf{0}$ 0 $(a|\delta)$ $\mathbf{0}$ (a|a)(a/x)(y/b) (y/δ) (y/y) $\left(\right)$ (b/b) \mathbf{O} (b/δ) $\mathbf{0}$ (b/y) $\mathbf{0}$ (l/y)(l/b)(l/x)(l/a) $(l|\delta)$ \mathbf{O} \mathbf{O} $\mathbf{0}$ $\left(\right)$ $\left(\right)$

BASIC TYPES OF OPTICS SYSTEMS

 α_1

Point to point

Parallel to parallel

Parallel to point

Point to parallel

H. Wollnik, Optics of charged particles, Academic Press, INC (1987)

7

(x/a) = 0

(a/x) = 0

(x/x) = 0

(x/x)(x/a)(a/a)(a/x)

(a/a) = 0

EQUATIONS OF MOTION

- Coulomb and Lorentz forces: $\vec{F} =$
 - \overrightarrow{E} : electric field, \overrightarrow{B} : magnetic field, \overrightarrow{v} : velocity, q: charge, m: mass
 - Exercise 1: can you tell why magnetic fields cannot change the kinetic energy?
- Magnetic rigidity: measure of how difficult it is to bend trajectory

$$B\rho = 3.107 \frac{m}{q} \beta \gamma, \beta = \frac{v}{c}, \gamma = \frac{1}{\sqrt{1-\beta}}$$

• Exercise 2: calculate rigidity of ¹²C⁵⁺ at 100 MeV/u

$$= q \overrightarrow{E} + q \overrightarrow{v} \times \overrightarrow{B} = \frac{d(m \overrightarrow{v})}{dt}$$

 $\frac{1}{32}$ in Tesla.meter (T.m.)

EMITTANCE AND PHASE SPACE

- Representation of ensemble of particles forming a beam
 - Six-dimensional ellipsoid phase space volume containing all trajectories
 - Emittance (ϵ) represents the volume of the ellipsoid
 - Orientations of the ellipsoid indicate correlations between coordinates
 - Transverse emittance (x, a) and (y, b)
 - Longitudinal emittance (ℓ, δ)

D. Bazin, NUSYS 2019, 12-18 August, Lanzhou, China

From: https://www.comsol.com/blogs/phase-spacedistributions-and-emittance-in-2d-charged-particle-beams/

EVOLUTION OF BEAM PHASE SPACE

- Liouville's theorem
 - Phase space distribution function evolves along the beam axis
 - Volume of six-dimensional ellipsoid is constant in Hamiltonian (energy conserving) system
- Non energy-conserving system make emittance grow or shrink

SIGMA MATRIX

- Representation of phase space ellipsoid
 - 6x6 symmetric matrix
 - Diagonal terms represent size of ellipsoid in each dimension
 - Off diagonal terms represent correlations between dimensions
- Evolution
 - Propagation of the sigma matrix follows the equation: $\sigma_2 = R\sigma_1 R^T$
 - R and R^T are the Transfer matrix and its transposed matrix
- D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

	- I	ransfer	Sigma	Inverse	Emittar	ices
	√(sig)	x	a	У	ь	ı
x(mm)	2.71					
a(mr)	20.5	0.28				
y(mm)	8.43	-0.001	02 0.0049	93		
b(mr)	15.6	-0.000	725 0.003	49 0.31		
l(cm)	1.37	0.135	0.687	0.0112	-0.00	0512
d(%)	1	0.123	-0.591	-0.008	34 -0.00	592 -0.966
			Di	ismiss		

BEAM ENVELOPE

- Space taken by the beam phase space along the optics system
- Can be calculated by propagating the sigma matrix along the optics system
- Density function inside beam envelope can be assumed uniform or gaussian

ACCEPTANCES AND TRANSMISSIONS

- Acceptance: physical limits of elements that compose the optics system
- Transmission: percentage of beam phase space that fits inside acceptance
- Also depends on density distributions in phase space

SOME TYPES OF BEAM OPTICS ELEMENTS

- Dipoles: deflect ions
 - Magnetic: perpendicular field
 - Electrostatic: radial field
- Quadrupoles: focus ions
 - Magnetic
- Higher order N-poles: corrections
- Cavities: accelerate

D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

Andre Holzner

QUADRUPOLE MATRIX

Analytical solution for ideal quadrupole

	$ \cos kL \\ -k \sin kL $	$k^{-1}\sin kL$ $\cos kL$	0 0	0 0	0 0	0 0
$T_{\circ} =$	0	0	$\cosh kL$	$k^{-1} \sinh kL$	0	0
'Q	0	0	k sinh kL	$\cosh kL$	0	0
	0	0	0	0	1	0
	0	0	0	0	0	1

• L: Effective length

 B_T with B_T field at pole tip, a $aB\rho$ radius and $B\rho$ particle magnetic rigidity

QUADRUPOLE DOUBLET

- Necessary to achieve focussing in both horizontal and vertical planes
 - Quadrupoles are focussing in one direction and defocussing in the other
- Point-to-point optics
- Point-to-parallel optics
- **Exercise 3**: calculate the Transfer matrix of a single quadrupole with drifts D on either side (only in x direction)
 - Can you find a analytical solution for a point-toparallel optics?
 - What is the length of the quadrupole if k=1.304and D=1 m?
- D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

QUADRUPOLE DOUBLET: SOLUTIONS $\begin{bmatrix} 1 & D \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} \cos kL & k^{-1} \sin kL \\ -k \sin kL & \cos kL \end{bmatrix} \times \begin{bmatrix} 1 & D \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos kL - Dk \sin kL & 2D \cos kL + k^{-1}(1 - D^2k^2) \sin kL \\ -k \sin kL & \cos kL - Dk \sin kL \end{bmatrix}$ Point-to-parallel in x

• Solve: $\cos kL - Dk \sin kL = 0$

•
$$L = \frac{1}{k} \arctan(\frac{1}{Dk})$$

For quadrupole with k=1.304, D=1 m, the length is 0.5 m

Х

FOCUSSING TRIPLET

- Advantages of triplet vs doublet
 - More flexibility to achieve desired optics
 - Diagonal elements can also be chosen
 - Example: system with all magnifications set to ||1||
 - Imaging optical system for a point-to-point configuration

	Trar	nsfer	Sigma	Inverse	Emittance	s
	x(m)	a(rad)	y(m)	b(rad)	l(m)	d(1)
xf	-1.03	6.46e-05	0	0	0	0
af	0.823	-0.97	0	0	0	0
уf	0	0	-0.993	-9.97e-	05 0	0
bf	0	0	-1.24	-1.01	0	0
۱f	0	0	0	0	1	0
df	0	0	0	0	0	1
			Di	smiss		

DIPOLE MAGNET

- Transfer matrix includes dispersive terms
 - Only in one direction: (x/δ) lateral dispersion and (a/δ) angular dispersion
 - No field gradient (radial variation)
 - α : bending angle, ρ : bending radius
 - Resolving power for a given beam spot size x_0 is $R = -\frac{(x/\delta)}{x_0 \times (x/x)}$ (ability to separate particles with different momenta)
- More complex geometries are possible
 - Field gradient and/or edge angles to produce focussing in x/y directions

D. Bazin, NUSYS 2019, 12-18 August, Lanzhou, China

 $\rho \sin \alpha$ 0 0 0 $\rho(1 - \cos \alpha)$ $\cos \alpha$ $-\rho^{-1}\sin\alpha$ 0 0 0 $\cos \alpha$ $\sin \alpha$ 0 0 0 $T_D =$ 0 0 1 0 0 $\rho(1 - \cos \alpha) = 0 \quad 0 \quad 1 \quad -L + \rho \sin \alpha$ $\sin \alpha$ 0 0 0 0 0

Dispersion (x/δ) scales with ρ Maximum dispersion for $\alpha = 180^{\circ}$ No dispersion for $\alpha = 360^{\circ}$ (cyclotron)

- **Exercise 4**: consider sector dipole with equal drift space D on either side
 - Calculate the transfer matrix as a function of ρ, α, D
 - Find the drift length necessary to make the system focussing in x
 - What is the lateral dispersion of the system if $\rho = 1m, \alpha = 45^\circ$?
 - What is the resolving power assuming a beam spot of 1mm?

DIPOLE SECTOR: SOLUTIONS $\begin{bmatrix} 1 & D & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} \cos \alpha & \rho \sin \alpha & \rho(1 - \cos \alpha) \\ -\rho^{-1} \sin \alpha & \cos \alpha & \sin \alpha \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & D & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \alpha - \frac{D}{\rho} \sin \alpha & 2D \cos \alpha + (\rho - \frac{D^2}{\rho}) \sin \alpha \\ \frac{-1}{\rho} \sin \alpha & \cos \alpha - \frac{D}{\rho} \sin \alpha \end{bmatrix}$ $\cos \alpha - \frac{D}{\rho} \sin \alpha \quad 2D \cos \alpha + (\rho - \frac{D^2}{\rho}) \sin \alpha \quad \rho - \rho \cos \alpha + D \sin \alpha$ $\sin \alpha$

Focussing condition: (x/a) = 0

• Solve
$$2D\cos\alpha + (\rho - \frac{D^2}{\rho})\sin\alpha = 0$$

•
$$D = \rho(\frac{1 + \cos \alpha}{\sin \alpha})$$

- For $\rho = 1m, \alpha = 45^\circ : D = 2.414m$
- Lateral dispersion: $(x/\delta) = 2cm/\%$

• Resolving power:
$$R = -\frac{2}{10^{-3} \times (-1)} = 1000$$

COMPLEX OPTICAL SYSTEMS

- Primarily composed of bending and focussing elements
- Several focussing, waist points and geometrical constraints
- Analytical calculations of optics in general not practical
- Numerical solutions become a multi-dimensional minimization problem (Lecture 2)

PART 2: METHODS AND INSTRUMENTS

- Ideal magnets versus real magnets
 - Effective length
 - Fringe fields
 - High order aberrations
- Instruments based on ion optics
 - Beam lines
 - Spectrometers and separators
 - Isochronous systems

REAL MAGNETS

- Ideal magnets have straight edges
- Real magnets have smooth edges
- The region where the field decays from maximum to 0 is called fringe field region
- The straight edge location corresponding to the same amount of field is called effective field boundary

VARIATIONS WITH FIELD

- Iron used for magnet poles saturates at about 1.2 Tesla (curve n°5)
- As the field changes in magnet, the location of the EFB moves
- Example shows effective length evolution for type A quadrupoles of the A1900
- Total variation is around 5%
- Optics calculations need to take this variation into account

MODELING OF FRINGE FIELDS

 Shape of fringe fields modeled using Enge function

•
$$F(z) = \frac{1}{1 + \exp[\sum_{i=0}^{n} a_i(\frac{z}{D})^i]}$$

- z: distance perpendicular to EFB, D: aperture of magnet, a_i: Enge coefficients
- Enge coefficients are fitted to field map data
- Stability of Enge function required from -3 to +5 of $\frac{z}{D}$ (COSY infinity)

D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

24

HIGH ORDER ABERRATIONS

- Due to non-linear effects (such as fringe fields for instance)
- Model of optics as linear combinations between final and initial coordinates only a approximation
- Terms of order greater than 1 are called aberrations
- Terms that depend on geometrical coordinates are called geometrical aberrat
- Terms that depend on momentum/energy coordinates are called chromatic aberrations

$$x_{f} = (x/x)x_{i} + (x/a)a_{i} + (x/\delta)\delta_{i}$$

$$+ (x/xx)x_{i}^{2} + (x/xa)x_{i}a_{i} + (x/aa)a_{i}$$

$$+ (x/x\delta)x_{i}\delta_{i} + (x/\delta\delta)\delta_{i}^{2}$$

$$+ (x/xaa)x_{i}a_{i}^{2} + (x/xa\delta)x_{i}a_{i}\delta_{i} + \dots$$
tions
Polynomial expansion similar to Taylor series

ILLUSTRATION ON SIMPLE DIPOLE

- Dipole magnet x focussing
- First order calculation shows perfect focussing of all 5 angles for the 3 different momenta
- Third order calculation shows blurring of images due to aberrations
- Blurring larger for momenta different from central ray indicate presence of chromatic aberrations

ABERRATION CORRECTIONS

- High order multipoles can be used to correct aberrations
 - Sextupoles can correct 2nd order terms
 - Octupoles can correct 3rd order terms
 - And so on ...
- Example on simple dipole
 - Largest aberration is $(x/a\delta)$
 - Adding a sextupole reduces it by ~ 2
 - But it increases (x/aa) by almost 7!

SYMMETRICAL SYSTEMS

- Aberrations can be better controlled when using symmetrical systems
- Many aberrations with even powers cancel out in symmetric system
- Example from simple dipole
 - Solution: add another sextupole symmetric to first with opposite field
 - (x/aa) goes back to original value while $(x/a\delta)$ is still reduced

INSTRUMENTS BASED ON ION OPTICS

- Simplest type: beam lines
- Purpose: transmit ions from one location to another with minimal losses
- Design principally depends on type of beam to be transmitted
 - Beam from accelerator (usually called primary beam): small emittance
 - Beam from separator (also called secondary beam): large emittance D

SPECTROMETERS

- Chromatic systems: final position depends on momentum
- Optics system designed to measure characteristics of charged particles • Usually located after a reaction target
- - Has large acceptances to collect as many reaction products as possible
 - Needs detection system to actually perform the measurements
 - Can be moved to different angles relative to the incoming beam direction
 - Resolving power designed to obtain a certain momentum resolution

EXAMPLE1: GRAND RAIDEN @ RCNP

- Optics configuration: QSQMDDD
- Characteristics
 - Maximum rigidity: 5.5 T.m.
 - Deflection angle: 162°
 - Momentum acceptance: 5%
 - Solid angle: 5 msr
 - Resolving power: 37,000 in momentum
- Used with primary beams from cyclotron

Incoming beam

HARDWARE SPECTROMETER

- Multipoles used to correct some aberrations
- Other aberrations mapped from data
 - Use of "angle sieve" to calibrate angles
- Use of dispersion matching technique (see later)

Y. Fujita et al., Eur. Phys. J. A 13, 411 (2002) Energy resolution: 50 keV Resolving power: 9,000 in energy

D. Bazin, NUSYS 2019, 12-18 August, Lanzhou, China

From G. Berg

EXAMPLE2: S800 @ NSCL

- Designed for reactions using secondary beams (large emittance)
- Large acceptances (5% momentum, 20 msr solid angle), resolving power: 10,000
- Has preceding beam line that can be used for dispersion matching (see later)

S800 OPTICS

- Optics design: QQDD
 - Maximize Y angular acceptance (waist between the two dipoles)
 - X focus at the focal plane
 - Dispersion: 96 mm/% (momentum)
 - Magnification (x/x): 0.9
- Focal plane measurements
 - Two tracking detectors to measure (x,y) positions
 - Followed by energy loss, timing, Energy

D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

36

DISPERSION MATCHING

- Incoming secondary beam has large momentum emittance (up to 1%)
 - Momentum measurement after reaction is blurred by this large emittance
 - Use preceding beam line to compensate for spectrometer dispersion
 - Position at focal plane only depends on momentum change in target
- Lateral and angular dispersion matching calculations
 - Exercise 5: find b_{16} and b_{26} so that $t_{16} = 0$ and $t_{26} = 0$, assuming focussing $s_{12} = 0$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} s_{11} & s_{12} & s_{16} \\ s_{21} & s_{22} & s_{26} \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} b_{11} \\ b_{21} \\ 0 \end{bmatrix}$$

DISPERSION MATCHING: SOLUTION

- Solve the system of equations:
 - $s_{11} \times b_{16} + s_{16} = 0$
 - $s_{21} \times b_{16} + s_{22} \times b_{26} + s_{26} = 0$
- Lateral dispersion of beam line: $b_{16} = -\frac{s_{16}}{2}$
- Angular dispersion of beam line: $b_{26} = s_{21} \times s_{16} s_{11} \times s_{26}$
- Solutions more complicated if spectrometer not at 0°

*s*₁₁

DISPERSION MATCHING IN 5800

- Drawbacks
 - Reduced momentum acceptance: 0.5%
 - Large beam spot on target

D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

Lateral dispersion at target: 107 mm/%

SOFTWARE SPECTROMETER

- No multipole to correct aberrations
- Aberrations are corrected "in software" from model of the spectrometer
- Model calculated from field maps of magnets and COSY calculations

Perdikakis et al., Phys. Rev. C 83, 054614 (2011) Tritium radioactive beam from ¹⁶O

D. Bazin, NUSYS 2019, 12-18 August, Lanzhou, China

Reaction: ¹²C(⁷Li,³H)¹⁶O at 19 MeV/u

SEPARATORS

- Achromatic systems: final position does not depend on momentum
- This needed from separators that produce secondary beams
- Previous dispersion matching systems are in effect achromatic
- Spectrometers can also be separators: just need to add some aperture or slits at the focal plane!
- Separators are designed to transmit particles into a beam for further use
- Care is needed to avoid beam spot size growth (aberration corrections)

BASIC CONCEPT

- Optics configuration of a typical separator
 - Two dispersive sections mirror to each other
 - Dispersions cancel to produce an achromatic image at the focal plane
 - Slits placed at the dispersive mid point select particles with the same B
 ho

EXAMPLE 1: LISE @ GANIL

- One of the first fragment separator

D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

• Simplest optics configuration: one dispersive focal plane in the middle

Later expanded with Wien filter (velocity filter) to improve purity of beams

Second generation of fragment separator designed for radioactive beam production

- Second generation of fragment separator designed for radioactive beam production
- 3 dispersive focal planes with dispersions 29 mm/% (sides) and 59 mm/%

- Second generation of fragment separator designed for radioactive beam production
- 3 dispersive focal planes with dispersions 29 mm/% (sides) and 59 mm/%

- Second generation of fragment separator designed for radioactive beam production
- 3 dispersive focal planes with dispersions 29 mm/% (sides) and 59 mm/%

D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

Optics configuration maximize vertical acceptance with waists in the middle of dipole magnets

- Second generation of fragment separator designed for radioactive beam production
- 3 dispersive focal planes with dispersions 29 mm/% (sides) and 59 mm/%
- Optics configuration maximize vertical acceptance with waists in the middle of dipole magnets
- Middle focal plane used for wedge selection (see later)

EXAMPLE 3: FRS @ GSI

- Very similar design to A1900
- Adapted to higher energies (~1 GeV/u)

EXAMPLE 4: RIBLLS @ IMP

- Lanzhou has two fragment separators!
- RIBLLs are s-shaped: no lateral dispersion at mid-point when in achromatic mode
- Second half used for tagging or as spectrometer

os carlo altan	Angular acceptance	50 (Horizontal)
NER	(mrad)	50 (Vertical)
	Momentum acceptance Δ P/P	10%
	Maximum magnetic rigidity (Tm)	10.64
	Magnetic rigidity resolution	1200

EXAMPLE 5: BIGRIPS+ZDS @ RIBF

- Third generation fragment separator
- Second tagging stage used to identify (tag) isotopes contained in beam
- ZDS downstream of reaction target located at F8

modes

WEDGE SELECTION

- First stage selection: magnetic rigidity *Bρ*
- Second stage selection: energy loss in material
- Energy loss varies as function of energy: uniform thickness changes dispersion!
- Angle of wedge-shaped material calculated to preserve dispersion therefore achromatism

WEDGE SELECTION

- First stage selection: magnetic rigidity *Bρ*
- Second stage selection: energy loss in material
- Energy loss varies as function of energy: uniform thickness changes dispersion!
- Angle of wedge-shaped material calculated to preserve dispersion therefore achromatism

WEDGE SELECTION

- First stage selection: magnetic rigidity *Bρ*
- Second stage selection: energy loss in material
- Energy loss varies as function of energy: uniform thickness changes dispersion!
- Angle of wedge-shaped material calculated to preserve dispersion therefore achromatism

MASS SEPARATORS

- Examples: FMA (ANL) and EMMA (TRIUMF)
 - Use of both electric and magnetic dipoles
 - Gives possibility to achieve M/Q focussing and separation (hence the name "Mass separator")
 - Limited to energies around 10
 MeV/u due to limits on electric field
 - Resolving power: 480 for 1mm beam spot, 10mm/% dispersion

D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

EMMA separator @ TRIUMF

B. Davids and C. N. Davids, NIM A 544, 565 (2005)

RECOIL SEPARATORS

- Examples: DRAGON (TRIUMF) and SECAR (NSCL/FRIB)
 - Achieve very high resolving power to select recoils close to beam velocity, to measure very small cross sections
 - SECAR beam rejection is 10⁻¹³
 - Aberrations need to be corrected via sextupoles and octupoles
 - Use of Wien velocity filters (\overrightarrow{E} perpendicular to \overrightarrow{B})
 - Exercise 6: show that the force is proportional to the velocity

D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

G.P.A. Berg et al., NIM B 376, 165 (2016)

ISOCHRONOUS SYSTEMS

- Isochronous = independent of time
 - Systems where the time-of-flight is independent of momentum and angles
 - Length of trajectories compensates for the differences in velocities
 - Isochronous systems are also usually achromatic
- Principal uses
 - Accelerator systems where beam is pulsed: conserve bunch structure
 - Mass measurements systems

s the

TOFI mass spectrometer

EXAMPLE1: CYCLOTRON

• Recall dipole first order Transfer matrix

- For $\alpha = 360^{\circ}$ we get dispersions $T_{16} = T_{26} = 0$ (achromatic) as well as $T_{56} = -L$ which is condition for isochronous system
- More sophisticated geometries require complex orbit calculations

D. Bazin, NUSYS 2019, 12-18 August, Lanzhou, China

Koeth cyclotron

EXAMPLE2: STORAGE RINGS

- Can be tuned in isochronous mode
- Used to make high precision mass measurements as well as other studies (lifetime of isomers)
- Example shown on ESR @ GSI
- Resolution achieved: 172 keV (sigma)
- IMP Lanzhou has similar ring

D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

Diwisch's thesis Marcel

EXAMPLE: ISLA

- Isochronous Spectrometer with Large Acceptances
- Concept based on the TOFI spectrometer
- Acceptances: 20% momentum and 64 msr solid angle
- Focussing mainly done from edge angle on dipoles
- Symmetric configuration cancels most of the large aberrations

D. Bazin, NUSYS 2019 , 12-18 August, Lanzhou, China

D. Bazin and W. Mittig, NIM B 317, 319 (2013)