Nuclear Structure Theory for Cluster Physics

Masaaki Kimura (Hokkaido U.)

- 1. Self Introduction
- 2. Introduction to nuclear cluster physics
- 3. Appendix (Nuclear Data)

Self introduction

Masaaki Kimura(木村 真明)

A physicist for theoretical nuclear physics

- 2002 Ph. D at Kyoto U.
- \bigcirc 2003-2007 Post Doc. at RIKEN, Kyoto and Tsukuba
- 2008- Hokkaido U.
- O 2017- Head of **nuclear data center** at Hokkaido U.

Research interests

- Structure of neutron-rich nuclei (magic #, n-halos)
- Nuclear clustering in stable and unstable nuclei, and related astrophysics
- \bigcirc Structure of hypernuclei

Plan of this lecture

PART 1: Introduction to nuclear cluster physics

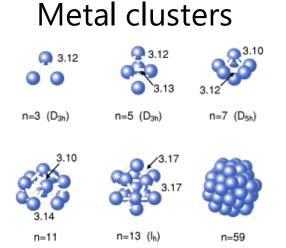
- What is nuclear cluster?
- Ikeda diagram
- Clusters and astrophysics

PART 2: A story of the Hoyle state

Tomorrow:

PART 3: Introduction to novel nuclear model for clustering

Part I An introduction to nuclear cluster physics


- What is nuclear cluster?
- Ikeda diagram
- Clusters and astrophysics

What is cluster ?

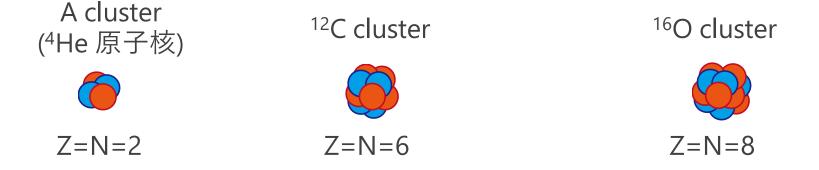
クラスター Wikipediaより

クラスター、クラスタ(cluster)は、英語で「房」「集団」「群れ」のこと。

- クラスター(物質科学)-原子および分子の、数個から数十個ないしそれ以上の集合。
- 星団(star cluster) 恒星の集団。
- 銀河団(cluster of galaxies) 銀河の集団。

An universal phenomena in the interacting many-body systems

星団(昴)


What is cluster in nuclear physics ?

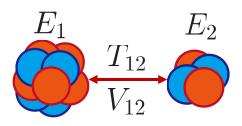
クラスター Wikipediaより

クラスター、クラスタ(cluster)は、英語で「房」「集団」「群れ」のこと。

Clusters in atomic nuclei
A group of tightly bound nucleons

Typical example of clusters

What is cluster in nuclear physics ? There are the excited states of atomic nuclei which is composed of clusters (cluster states) **Typical cluster states** Excited state Excited state $^{12}C+\alpha$ clusters **6** 7.7 MeV 6.0 MeV 3α clusters 12 C ground state ¹⁶O ground state

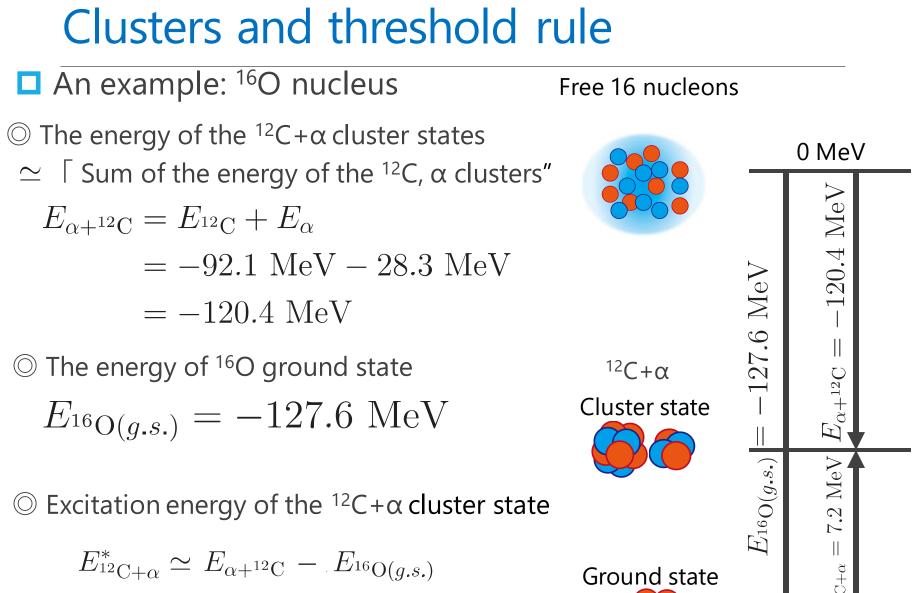

In the cluster states, the nucleons are confined within clusters.
 Clusters are weakly bound and constitute meta-stable states

When clusters are formed?

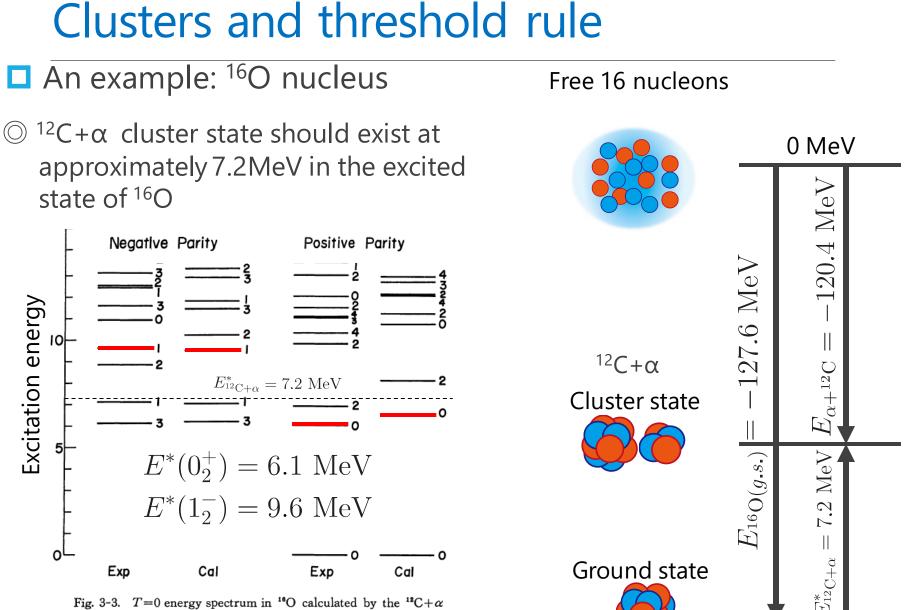
 $\ensuremath{\bigcirc}$ Consider the energy of the cluster state composed of two clusters

 $E_{cluster} = E_1 + E_2 + T_{12} + V_{12}$

 \odot Interaction between clusters should be weak, $V_{12}\simeq 0$ Otherwise, the clusters should be dissolved

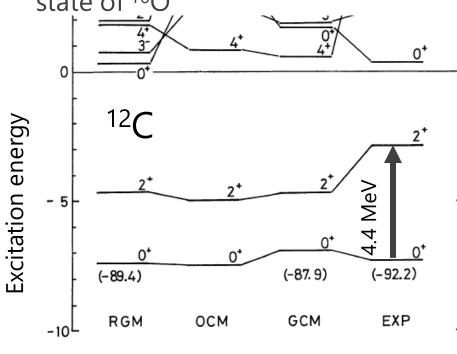


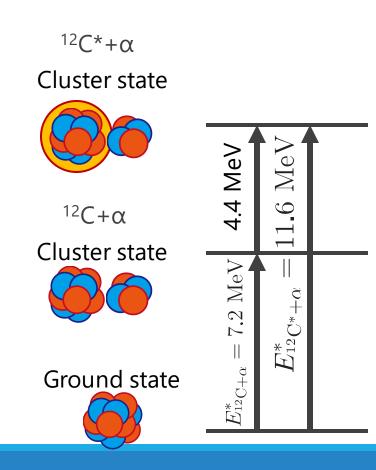
 \odot Kinetic energy between clusters should be small, $T_{12}\simeq 0$ Otherwise, they cannot form a meta-stable state

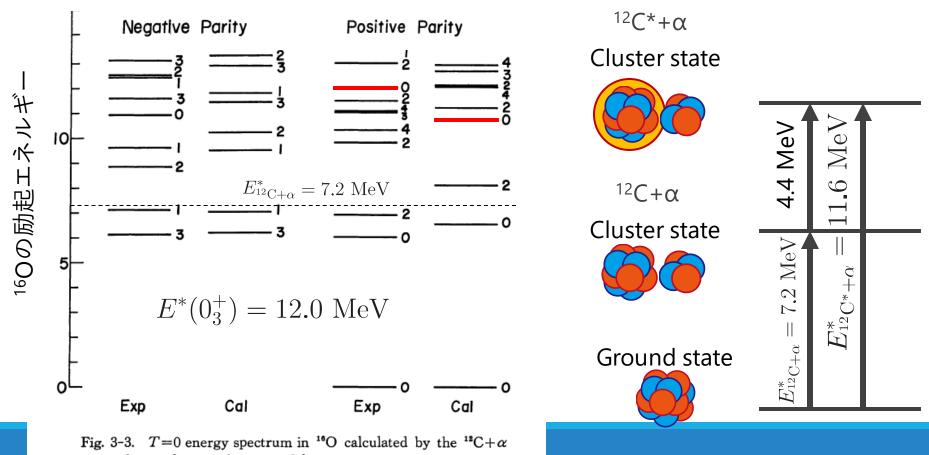

© Therefore, the energy of the cluster state is approximately equal to "The sum of the internal energies of clusters"

 $E_{cluster} \simeq E_1 + E_2$

= "The energy required to decompose the system into clusters" (Threshold energy)

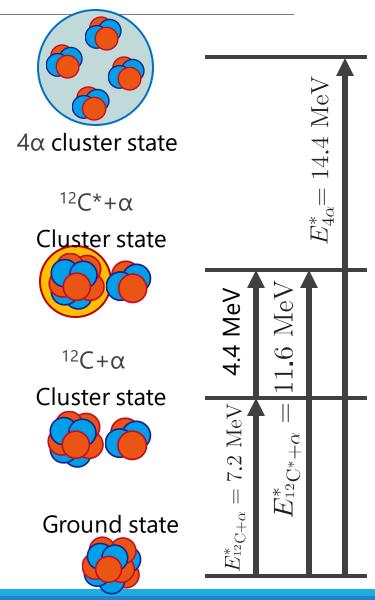



= 7.2 MeV


orthogonality condition model.

- An example: ¹⁶O nucleus
- \bigcirc Consider ¹²C*+ α cluster state, in which ¹²C cluster is excited to 2+ state (4.4 MeV)
- \bigcirc ¹²C*+ α cluster state should exist at approximately 11.6MeV in the excited state of ¹⁶O

- An example: ¹⁶O nucleus
- \bigcirc $^{12}C^*+\alpha\,$ cluster state should exist at approximately 11. 6MeV in the excited state of ^{16}O

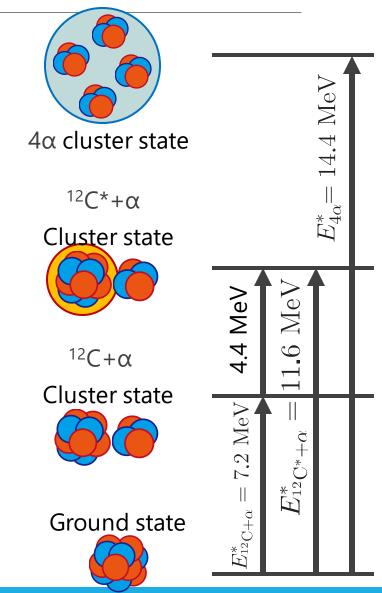

orthogonality condition model.

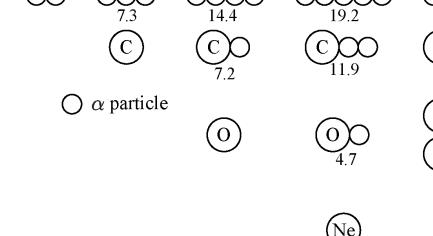
An example: ¹⁶O nucleus

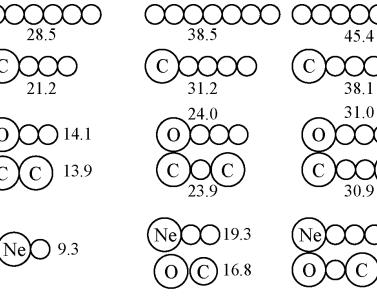
 \bigcirc Decompose ¹⁶O into 4 α clusters

$$E_{4\alpha}^* \simeq 4E_{\alpha} - E_{^{16}O(g.s.)}$$

= -4 × 28.3 MeV + 127.6 MeV
= 14.4 MeV

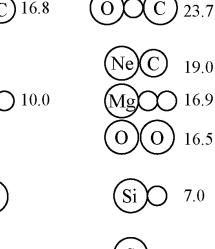

This state will be discussed later


We can extend this idea


- Cluster states will appear at the threshold which is equal to the energy required to decompose the system to clusters
- O As the excitation energy increases, various cluster states will appear
- O Clustering should occur as function of the excitation energy

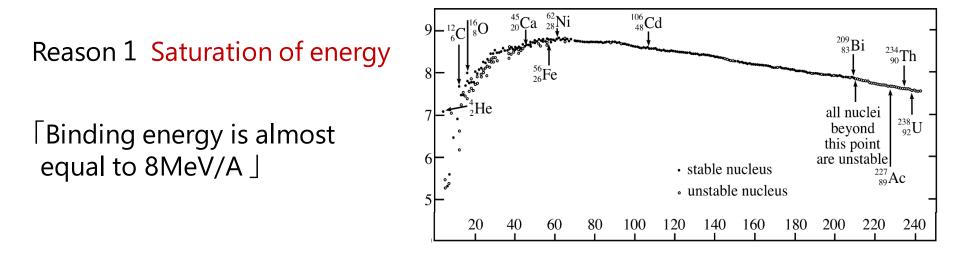
The so-called "Ikeda diagram" illustrates this idea

Ikeda Diagram



[Si]

(Mg'


- Clustering is one of the essential excitation mode of atomic nucleus
- Many cluster states may appear at relatively small excitation energy

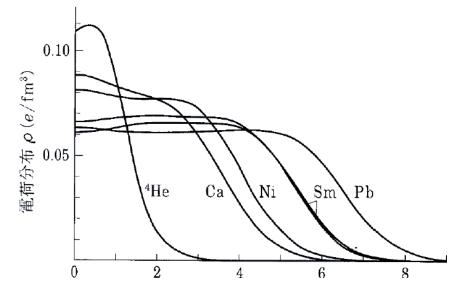
)26.2

Clustering and basic properties of nuclei

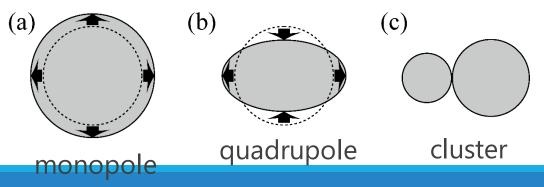
○ Why many cluster states can appear at small excitation energy?
 ⇒ It is closely related to the basis properties of nuclei

○ If the binding energy is exactly equal to 8MeV/A, all threshold energy is equal to 0 MeV $E_{cluster}^* = E_1 + E_2 - E_{g.s.} = 8A - 8C_1 - 8C_2 = 0$ ($C_1 + C_2 = A$)

 \bigcirc This also explains why are ⁴He, ¹²C, ¹⁶O typical clusters


Clustering and basic properties of nuclei

○ Why many cluster states can appear at small excitation energy?
 ⇒ It is closely related to the basis properties of nuclei

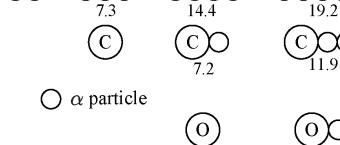


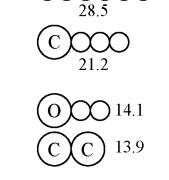
[Density is almost constant]

- = [Nucleus is incompressible]
- We need large energy to change the density

 \bigcirc Excitation mode which changes the density requires large energy

Clustering and basic properties of nuclei

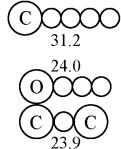

Exercise 1


Using Bethe Weizsacker mass formula, estimate the energy difference between the spherical ground state and clustered state

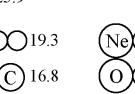
- * Assume that proton number equals to neutron number (N=Z)
- * Assume a symmetric clustering
- * Neglect the kinetic energy and potential between clusters

$$E_B = a_V A - a_S A^{2/3} - a_C rac{Z^2}{A^{1/3}} - a_A rac{(A-2Z)^2}{A}$$

Ikeda diagram



Ne) 9.3


Mg

19

Ne.

38.5

10.0

[Si]

45.4

38.1

31.0

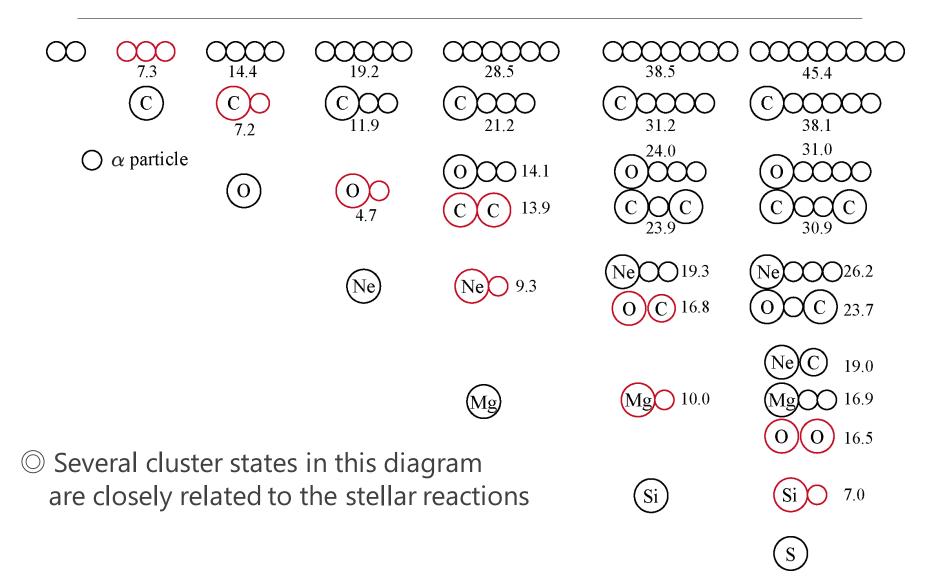
)26.2

23.7

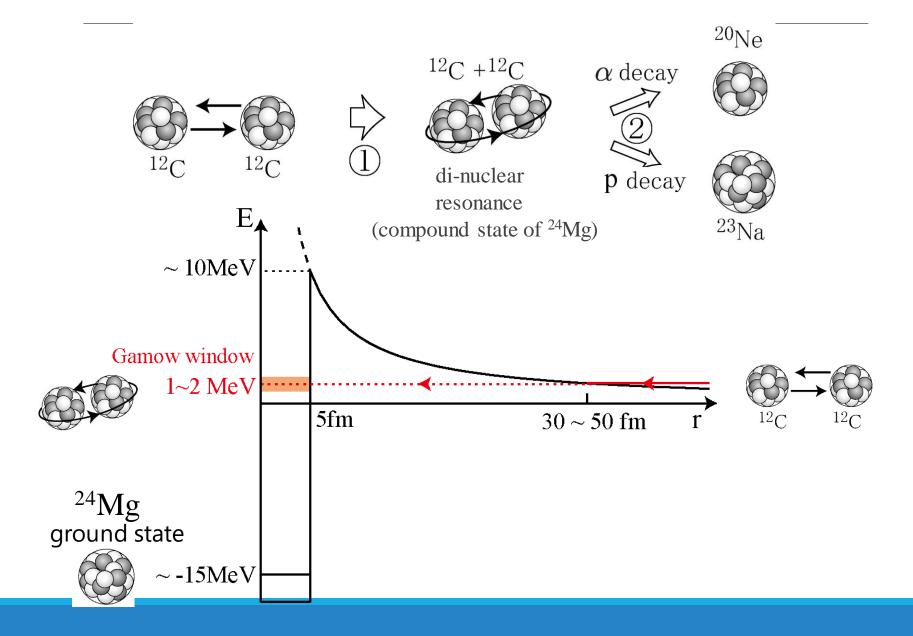
19.0

16.9

16.5

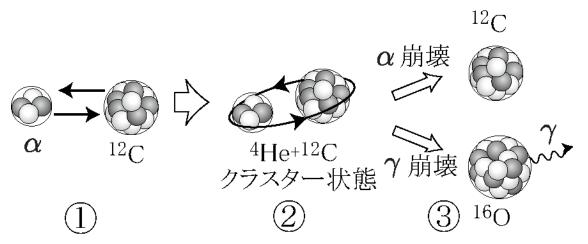

7.0

0


Ikeda diagram is a conjecture

- Only several cluster states have been identified so far.
- \odot We are still studying to understand
 - dynamics of nuclear many body systems
 - astrophysical reactions

Ikeda diagram and astrophysical reactions



Ikeda diagram and astrophysical reactions

Ikeda diagram and astrophysical reactions

Fusion reactions occurs in the stars

1 He collides other nucleus

② If the incident energy is equal to the energy of the cluster state (resonance), the reaction cross section increases in order of magnitude

③ In this case, the reaction products are determined by the decay mode of the cluster state (resonances)

O To understand the stellar reactions, we need to know the energy and decay mode of the cluster states (resonances)

References (天体核反応)

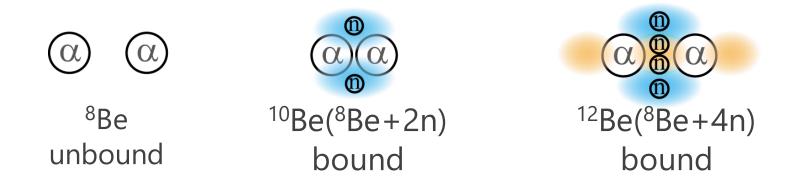
Cauldrons in the Cosmos: Nuclear Astrophysics (Theoretical Astrophysics) 1st Edition

Principles of Stellar Evolution and Nucleosynthesis Reprint Edition

by Donald D. Clayton ▼ (Author)

Extension of the Ikeda diagram

Extended Ikeda Diagram (+valence neutrons, N≠Z nuclei)



O Unstable nucleus have the cluster states different from the ordinary nuclei

These novel type of clustering cannot be understood by the lkeda diagram

Molecular states in Be isotopes

If we add neutrons to N=Z nucleus

 \bigcirc unbound 2 α clusters are bound by neutrons ⇒ valence neutrons plays a glue-like role to bound custers

◎ It is analogous to the covalent molecules (共有結合)

O This kind of novel types of clusters in neutron rich nuclei are intensively studied in these years.

Summary of Part 1

- $\ensuremath{\bigcirc}$ What is cluster? What is cluster state
 - Cluster: A group of tightly bound nucleons
 - Cluster state: Nuclear state composed of clusters
- ◎ Ikeda diagram
 - Cluster state should appear at the threshold energy
- \bigcirc Ikeda diagram and stellar reactions
 - Cluster states increase the stellar reaction rate in order of magnitude
- \bigcirc Extension of Ikeda diagram

Novel type of cluster state appears in neutron rich nuclei. They are intensively studied in these years.

Appendix

A brief introduction to nuclear database

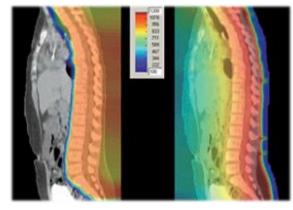
Self introduction

Masaaki Kimura(木村 真明)

A physicist for theoretical nuclear physics

- 2002 Ph. D at Kyoto U.
- \bigcirc 2003-2007 Post Doc. at RIKEN, Kyoto and Tsukuba
- 2008- Hokkaido U.
- O 2017- Head of nuclear data center at Hokkaido U.

Research interests


- Structure of neutron-rich nuclei (magic #, n-halos)
- Nuclear clustering in stable and unstable nuclei, and related astrophysics
- \bigcirc Structure of hypernuclei

What is the nuclear reaction database ?

Multiuse of Nuclear Reactions (radio activities)

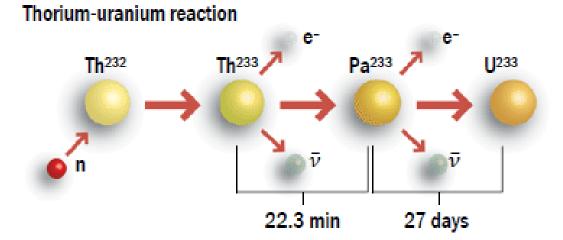
Energy

Medical treatment

Food

Industry

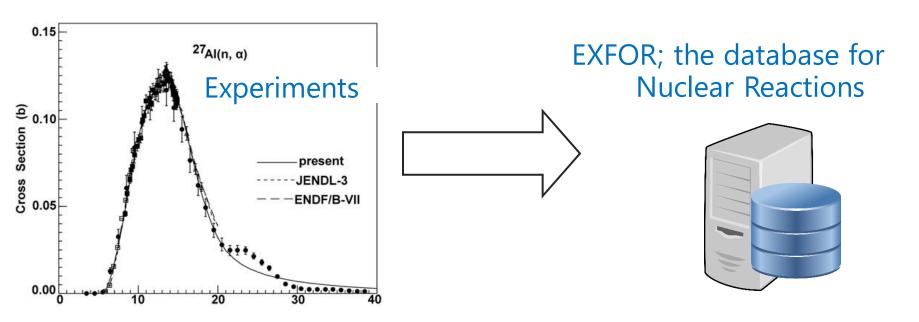
Academic research



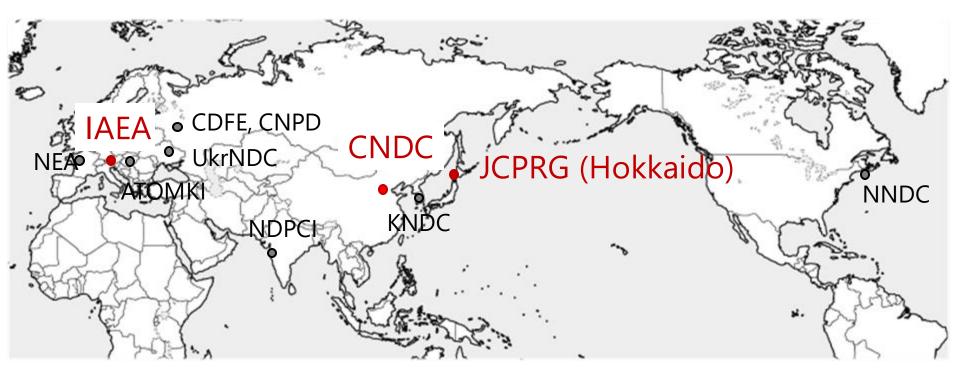
What is the nuclear reaction database ?

Knowledge on the Nuclear Reactions is essential for multiuse of Nuclear Reactions

○ How often Nuclear Reactions occur?

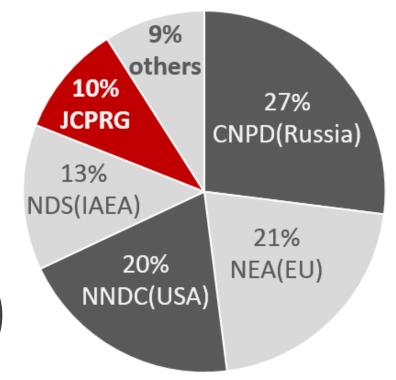

○ What will be produced by the Nuclear Reactions?

Nuclear Reaction Data is the most fundamental part for the safety and effective use of Nuclear Reactions


What is the nuclear reaction database ?

Knowledge on the Nuclear Reactions is essential for multiuse of Nuclear Reactions

All experimental data are transformed into universal common database format called EXFOR, and stored


EXFOR is developed and maintained by the International Atomic Energy Agency (IAEA) and Int. Network of Nuclear Reaction Data Centre (NRDC)

JCPRG is one of the centers of NRDC

Today, EXFOR includes approximately 22,000 experiments, 170,000 data sets, and 15,000,000 data points for 2,600 nuclear reactions.

- We are compiling database for all experiments in Japan
- Our contribution to EXFOR reaches 10% of total entries.
- Chinese contribution is rapidly increasing (2% \sim)

Finding of the new element "Ninohium" by Prof. Morita

Experiment on the Synthesis of Element 113 in the Reaction ²⁰⁹Bi(⁷⁰Zn,n)²⁷⁸113

Kosuke MORITA^{1*}, Kouji MORIMOTO¹, Daiya KAJI¹, Takahiro AKIYAMA^{1,2}, Sin-ichi GOTO³, Hiromitsu HABA¹, Eiji IDEGUCHI⁴, Rituparna KANUNGO¹, Kenji KATORI¹, Hiroyuki KOURA⁵, Hisaaki KUDO⁶, Tetsuya OHNISHI¹, Akira OZAWA⁷, Toshimi SUDA¹, Keisuke SUEKI⁷, HuShan XU⁸, Takayuki YAMAGUCHI², Akira YONEDA¹, Atsushi YOSHIDA¹ and YuLiang ZHAO⁹

The first paper for the Element 113th was also compiled by us.

(EXFOR entry E1920)

ENTRY	E1920 20180123	E19200000001
SUBENT	E1920001 20180123	E192000100001
BIB	14 53	E192000100002
TITLE	Experiment on the synthesis of element 113 in the	E192000100003
	reaction 209Bi(70Zn,n)278-113	E192000100004
AUTHOR	(K.Morita, K.Morimoto, D.Kaji, T.Akiyama, S.Goto,	E192000100005
	H.Haba, E.Ideguchi, R.Kanungo, K.Katori, H.Koura,	E192000100006
	H.Kudo, T.Ohnishi, A.Ozawa, T.Suda, K.Sueki, H.S.Xu,	E192000100007
	T.Yamaguchi, A.Yoneda, A.Yoshida, Y.L.Zhao)	E192000100008
INSTITUTE	(2JPNIPC)	E192000100009
	(2JPNSUU) Department of Physics	E192000100010
	(2JPNNII) Center for Instrumental Analysis	E192000100011
	(2JPNTOK) Center for Nuclear Study	E192000100012
	(2JPNJAE) Advanced Science Research Center	E192000100013
	(2JPNNII) Department of Chemistry	E192000100014
	(2JPNTSU)	E192000100015
	(3CPRIMP)	E192000100016
	(3CPRIHP)	E192000100017
REFERENCE	(J,JPJ,73,(10),2593,200410)	E192000100018
DECAY-DATA	(113-NH-278,,A,11680.)	E192000100019
	Alpha decay (11.68+-0.04 MeV, 344 micro-sec) measured	E192000100020
	(111-RG-274,,A,11150.)	E192000100021
	Alpha decay (11.15+-0.07 MeV, 9.26 msec) measured	E192000100022
	(109-MT-270,,A,10030.)	E192000100023
	Alpha decay (10.03+-0.07 MeV, 7.16 msec) measured	E192000100024
	(107-BH-266,,A,9080.)	E192000100025
	Alpha decay (9.08+-0.04 MeV, 2.47 sec) measured	E192000100026
SUBENT	E1920002 20180123	E192000200001
BIB	3 3	E192000200001
REACTION	(83-BI-209(30-ZN-70,N)113-NH-278,,SIG)	E192000200002
STATUS	(TABLE) Taken from text, p2595 in reference	E192000200004
HISTORY	(20170925A) SE: SF4:113-*-278 -> 113-NH-278	E192000200005
ENDBIB	3 0	E192000200006
NOCOMMON	0 0	E192000200007
DATA	4 1	E192000200008
EN	DATA +ERR-S -ERR-S	E192000200009
MEV	FB FB FB	E192000200000
349.		E192000200011
ENDDATA	3 0	E192000200012
ENDSUBENT	11 0	E192000299999
ENDENTRY	2 0	E192099999999
DISDITIT	- •	

EXFOR is an important bridge which links our academic research in the University and the social activities outside of University

> EXFOR; the database for Nuclear Reactions

An important remark!

If you perform an experiment in Japanese facility,

ety

you must send us the data if we request.

We'll compile EXFOR entry for your experiment