Nuclear Structure Theory for Cluster Physics

Masaaki Kimura (Hokkaido U.)

Part. 2 A story of the Hoyle state

Prediction and discovery of the Hoyle state

- **Triple** α reaction (Synthesis of ¹²C)
- © Elements are synthesized by the fusion reactions in stars
- \bigcirc There are no stable nucleus in A=8 isobars(⁸B, ⁸Be, ⁸Li, ⁸He)
- \bigcirc This means that the fusion reaction must stop at A=7 and no elements heavier than A=8 will be synthesized

Prediction and discovery of the Hoyle state

- O Nevertheless, in our Universe, elements heavier than A=8 are abundant. (¹²C, ¹⁶O, ...)
- ◎ To resolve this puzzle, Porf. F. Hoyle proposed the following scenario in 1950's

Prediction and discovery of the Hoyle state **Triple** α reaction (Synthesis of ¹²C) (1) Fusion of ⁴He yields ⁸Be (life 10⁻¹⁶ sec.) (2) Before the decay of ⁸Be, another ⁴He comes. They forms meta-stable state (resonance state) composed of three ⁴He clusters α decay ③ The resonance mainly decays into three ⁴He nucleus, but occasionally γ decay decays by emitting γ -ray. As a result, ${}^{12}C(g.s.)$ is yielded. ¹²C ground state

Prediction and discovery of the Hoyle state

Triple α reaction (Synthesis of ¹²C)

Fred Hoyle predicted the existence of \bigcirc the resonance state in ¹²C that is composed of three ⁴He clusters just above the 3 α threshold energy.

Otherwise, the reaction rate becomes small in order of magnitude and he cannot explain the origin of ¹²C in the universe

Later, the experimentalists found the 0⁺ state at 7.7 MeV, which we call "Hoyle state" today.

7.7 MeV

 3α threshold

- Many people have been interested in the structure of the Hoyle state
- Morinaga proposed "linear-chain" structure of the Hoyle state

 αααα Linear alignment of thee ⁴He clusters

H. Morinaga, Phys. Rev. 101, 254 (1956).

- This idea attracted much interests
 - Extremely deformed state (1:3 deformation)
 - Quite different from the ordinary nuclear structure
- However, "linear-chain hypothesis" was denied, because it cannot explain short lifetime of α-decay

- Linear chain structure cannot explain the very short alpha decay lifetime of the Hoyle state
 - Y. Suzuki, H. Horiuchi, and K. Ikeda, PTP47, 1517 (1972).
 - 1 Linear Chain state must have large orbital angular momentum of alpha particles
 - 2 If alpha particle has large orbital angular momentum, the alpha decay lifetime becomes much longer.

Exercise 2

Show that the wave function with angular momentum 0 is spherical

Hint: Rotation operator, for example about z axis, is given as

$$R_z(\theta) = e^{-iJ_z\theta}$$

(1) Linear Chain state have large orbital angular momentum of α particle Assume that the Linear chain has ⁸Be(0⁺)+ α structure, then

 \bigcirc ⁸Be(0⁺) wave function is a superposition of various orientation

 \bigcirc ⁸Be(0⁺) + α state is illustrated as

There are many non-linear-chain components

Thus, the linear chain must contain ⁸Be(2⁺), ⁸Be(4⁺) components

(2) If α cluster has large orbital angular momentum, α decay lifetime becomes much longer

Exercise 2

 \bigcirc Show that the log of the alpha decay lifetime λ is proportional to the $E^{-1/2}$ where E is the Q-value of the alpha decay (Geiger-Nuttall law, Gamow model for alpha decay)

$$\ln\lambda=-a_1rac{Z}{\sqrt{E}}+a_2$$

In the Gamow model, we assume that the orbital angular momentum of alpha particle is zero. Show that the lifetime becomes much longer if the alpha particle has orbital angular momentum

Linear chain structure cannot explain the very short alpha decay lifetime of the Hoyle state

Y. Suzuki, H. Horiuchi, and K. Ikeda, PTP47, 1517 (1972).

- 1 Linear Chain state must have large orbital angular momentum of alpha particles
- If alpha particle has large orbital angular momentum, the alpha decay lifetime becomes much longer.

Thus, it was shown that \bigcirc Hoyle state is not a linear chain \bigcirc If linear chain exist, it should be a mixture of the ⁸Be(0⁺)+ α , ⁸Be(2⁺)+ α , and ⁸Be(4⁺)+ α , and hence, it should decay to the ⁸Be(2⁺) and ⁸Be(4⁺) not only to ⁸Be(0⁺)

So, how the Hoyle state looks like?

3-body problem of alpha particles was numerically solved by using super computer

It was concluded that the Hoyle state is a "dilute bosonic gas state"

Y. Fujiwara et al., PTPS68, 29 (1980).

 \bigcirc It is composed of 3 α particles

 \bigcirc All α particles have orbital angular momentum 0

 Radius of the Hoyle state is large (bound state approx.)

□ So, how the Hoyle state looks like?

- It was concluded that the Hoyle state is a "dilute bosonic gas state"
- \bigcirc It is composed of 3 α particles
- \bigcirc All α particles have orbital angular momentum 0
- Radius of the Hoyle state is large (bound state approx.)
- The Hoyle state can be considered as a finite system of alpha-boson gas. Uegaki et al., PTP 57, 1262 (1977).

The Hoyle state is a Bose-Einstein condensate of alpha particles

A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, PRL87, 192501 (2001)

THSR wave function $|\Phi_{n\alpha}\rangle = (C_{\alpha}^{\dagger})^{n} |vac\rangle$

$$C_{\alpha}^{\dagger} = \int d^{3}R \ e^{-\mathbf{R}^{2}/R_{0}^{2}} \int d^{3}r_{1} \cdots d^{3}r_{4}$$
$$\times \varphi_{0s}(\mathbf{r}_{1} - \mathbf{R})a_{\sigma_{1}\tau_{1}}^{\dagger}(\mathbf{r}_{1}) \cdots \varphi_{0s}(\mathbf{r}_{4} - \mathbf{R})a_{\sigma_{4}\tau_{4}}^{\dagger}(\mathbf{r}_{4} - \mathbf{R})a$$

 All nucleons are confined in the alpha particles

 All alpha particles occupies the same orbit (bosons)
 (This is really simplified ansatz!)

The Hoyle state is a Bose-Einstein condensate of alpha particles

A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, PRL87, 192501 (2001)

THSR wave function $|\Phi_{n\alpha}\rangle = (C^{\dagger}_{\alpha})^n |vac\rangle$

Hoyle state

$$C^{\dagger}_{\alpha} = \int d^{3}R \ e^{-\mathbf{R}^{2}/R_{0}^{2}} \int d^{3}r_{1} \cdots d^{3}r_{4}$$
$$\times \varphi_{0s}(\mathbf{r}_{1} - \mathbf{R})a^{\dagger}_{\sigma_{1}\tau_{1}}(\mathbf{r}_{1}) \cdots \varphi_{0s}(\mathbf{r}_{4} - \mathbf{R})a^{\dagger}_{\sigma_{4}\tau_{4}}(\mathbf{r}_{4})$$

\bigcirc This simple ansatz works surprisingly well

E_k (MeV)	E_{\exp} (MeV)	$E_k - E_{n\alpha}^{ m thr}$ (MeV)	$(E - E_{n\alpha}^{\rm thr})_{\rm exp}$ (MeV)	$\sqrt{\langle r^2 \rangle}$ (fm)	$\sqrt{\langle r^2 \rangle_{\rm exp}}$ (fm)
-85.9	$-92.16 (0_1^+)$	-3.4	-7.27	2.97	2.65
$-82.0 \\ -82.5$	$-84.51 (0_{2}^{+})$ -84.89	+0.5	0.38	4.29	

Υ.

 If the Hoyle state can be regarded as a BEC, its excitation modes should be observed

Many Chinese (Nanjing U.) & Japanese researcher are working together

Ab-initio calculations for the Hoyle state

GFMC (AV18 + ILL)

QMC (EFT)

E. Epelbaum, et al.,, Phys. Rev. Lett. 109, 252501 (2012)

Summary of the Hoyle state

 \bigcirc The Hoyle state was predicted to explain 12C synthesis in the stars

 \bigcirc The linear-chain structure was proposed as the structure of the Hoyle state. But, it failed to explain the lifetime.

 \bigcirc Model calculations showed that the Hoyle state is a bosonic gas-like state

 \bigcirc It was found that the Hoyle state is the BEC of alpha particles

 \bigcirc Based on this idea, 4a, 5a condensates is being interested in.

 \bigcirc Linear chain is considered to be unstable in 12C

Recent story of the Linear Chain

Does the Linear Chain state exist?

© Linear Chain proposed by Porf. Morinaga cannot be the structure of the Hoyle state (Lifetime)

© Recently, the Linear Chain story was revived in the study of the neutron-rich Carbon isotopes (¹⁴C and ¹⁶O)

¹¹Li

- \bigcirc Important ingredients of Ikeda diagram
 - Saturation of "energy density"
 - Saturation of "matter density"

$$E_B = a_V A - a_S A^{2/3} - a_C rac{Z^2}{A^{1/3}} - a_A rac{(A-2Z)^2}{A} \pm \delta(A,Z)$$

What will happen?

Energy/Matter densities should be kept constant
 Proton and neutron overlap should be maximized

to minimize symmetry energy

To possible ways to achieve them

- 1. Mean-field with neutron skin
- Densities are "globally" kept almost constant
- Symmetry energy is "globally" minimized

What will happen?

O Energy/Matter densities should be kept constant

 Proton and neutron overlap should be maximized to minimize symmetry energy

To possible ways to achieve them

- 2. Clustering
- Densities are "locally" kept constant
- Symmetry energy is "locally" minimized

Which is better?

"Global" v.s. "Local" "Neutron Skin" v.s. "Cluster"

A possible theoretical answer

"neutron skin" \Rightarrow "clusters with skin"

Y. Kanada-En'yo and H. Horiuchi, PRC52, 647(1995).

Experimental data

Observed increase of charge radius can be attributed to clustering

Charge radius of B isotopes:

A. Estrade, et al. PRL113, 132501 (2014).

A. Krieger, et al., PRL108, 142501 (2012)

What is behind the clustering in neutron-rich nuclei?

Underlying quantum shell effect; "molecular-orbits"

Herzberg G "molecular spectra and Molecular structure", van Nostrand, Princeton (1950) M. Seya, et al., PTP65, 204 (1981) W. von Oertzen et al., Phys. Rep. 432, 43 (2006).

A special class of valence neutron orbits (molecular-orbits; MO) are formed around the clustered core

MO are described by the Linear Combination of Atomic Orbits (LCAO) around each cluster

It has been shown that the combination of π and σ orbits reasonably explains low-lying states of Be N. Itagaki, et al., PRC62 034301 (2000)

- Charge radii of Be isotope is reasonably explained by the molecular orbit
 - \bigcirc 2 α cluster core surrounded by the valence neutrons
 - \bigcirc Valence neutrons stabilizes 2α cluster core
 - $\bigcirc \pi$ -orbit reduces the clustering, while σ -orbit enhances
- Molecular orbit states do not follow Ikeda diagram

Molecular orbit is a novel type of the clustering and it stabilizes the cluster structure

How about the linear-chain state?

Linear Chains with MO

An interesting extension of MO is linear-chain of 3α

H. Morinaga, Phys. Rev. 101, 254 (1956).

\bigcirc Linear chain of 3 α does not exist in ¹²C

Y. Kanada-En'yo, PRL81, T. Neff et al, PRL105 0⁺ state above the Hoyle state is bent-armed 3α (not linear!)

 \bigcirc MO will stabilize the chain in 3 α + neutrons system A pilot study by N. Itagaki et al., PRC64, 014301 (2001)

 A series of recent experiments and MD calculations showed that the linear-chain formation in ¹⁴C is convincing

Linear Chain in neutron-rich nuclei

□ Valence neutrons stabilizes the linear chain?

Molecular Orbit around the linear chain

N. Itagaki et al., PRC64, 014301

Search for the linear chain

Local energy minimum at extremely deformed region

Linear chains in ¹⁴C (Theory)

T. Baba et al., PRC94, 044303 (2016), PRC95, 064318 (2017)

Evidence for Linear-chain

① Linear chain should be observed as the resonances of ¹⁰Be+⁴He

¹⁰Be has two neutrons in π orbit

¹⁰Be+⁴He resonance scattering should populate pi-bond linear chain

Experiments were performed

O M. Freer et al., PRC90, 054324 (2014)

○ A. Fritsch et al., PRC93, 014321 (2016)

○ H. Yamaguchi et al., PLB766, 11 (2017)

Linear chains in ¹⁴C (Theory)

M. Freer et al., PRC90 (2014), Fritsch et al., PRC93 (2016), H. Yamaguchi et al., PLB766 (2017)

○ Observed resonances (α+¹⁰Be resonant scattering) agree with π-bond linear chain ⇒ Huge moment-of-intertia!

Evidence for Linear-chain

② The linear chain should decay by the alpha particle emission

pi-bond linear chain should emit alpha

J^{π}	π -bond linear chain			Expt. [36]		Expt. [37]		Expt. [39]	
	E_x	$\Gamma_{\alpha}(5.2 \text{ fm})$	$\Gamma_{\alpha}(6.0 \text{ fm})$	E_x	Γ_{α}	E_x	Γ_{α}	E_x	Γα
0+	14.64	250	179					15.07	760
2+	15.73	214	188	(17.95)	(760)	15.0	290	16.22	190
4+	17.98	149	147	18.22	200	19.0	340	18.87	45
6+	21.80	123	151	20.80	300				
8+	27.25	77	120						

Evidence for Linear-chain

(3) The linear chain should also decay to ¹⁰Be(2⁺) state \bigcirc ⁸Be(0⁺) + α particle should be like this. It's is not a linear chain. $\Psi_{^{12}\mathrm{C}}(0^+) = (\alpha)\alpha(\alpha)$ + $\ell = 2$ Therefore, the linear-chain is a mixture of ⁸Be(0⁺) ⁸Be(2⁺) ⁸Be(4⁺) ⁰Be(g.s.) 4000 ¹⁰Be^{*}(2⁺) (P. J. Haigh et al.) Experiment by Pekin U. group (Prof. Yanlin Ye) Li et al., PRC95, 021303(R), (2017)

Evidence for σ-bond Linear-chain

σ-bond linear chain is not easy to populate

Experiment by Pekin U. group, (Prof. Yanlin Ye) Li et al., PRC95, 021303(R), (2017)

Breakup reaction ⁹Be(⁹Be,¹⁴C*)⁴He

Evidence for σ-bond Linear-chain

Candidate was reported but no J assignment

Summary for the linear chain

- Valence neutrons in molecular orbit play crucial role to explain the clustering in neutron-rich nuclei
- Valence neutrons stabilize the clusters by their glue-like role
- Linear chains can be stabilized by the assist of the valence neutrons
- For ¹⁴C, theories and experiments look being consistent for the linear-chain formation
- \bigcirc For ¹⁶C, theories predicts most stable linear-chain