Nuclear Physics School for Young Scientists (NUSYS-2019)
Institute of Modern Physics (IMP), Lanzhou, China
August 12-17, 2019

Current Status of RAON & Nuclear Physics Experiments

Byungsik Hong (洪炳軾) Korea University (高麗大學)

Overview of Rare Isotope Science Project

- Goal : To build a heavy-ion accelerator complex, RAON, in Korea for rare isotope science research
 - RAON: Rare isotope Accelerator complex for ON-line experiments
- O Budget: KRW 1,432 billion (US\$ 1.26 billion, U\$ 1 ≈ KRW 1,200)
 - Accelerators and experimental apparatus: 460.2 billion KRW
 - Civil engineering & conventional facilities: 972 billion KRW (incl. 357 billion KRW for purchasing land)
- Period : Dec. 2011 ~ Dec. 2021

System Installation Project

Development, installation, and commissioning of the accelerator systems that provides high-energy (200 MeV/u) and high-power (400kW) heavy-ion beams

Facility Construction Project

Construction of research and support facility to ensure stable operation of the accelerator and experiment systems and to establish a comfortable research environment (Accelerator & experiment buildings, supporting facility, administrative buildings, and guest house, etc.)

- ❖ Providing high intensity RIB by ISOL and IF ISOL: direct fission of ²³⁸U by 70 MeV p IF: PF of 200 MeV/u ²³⁸U at 8.3 pµA
- ❖ Providing high quality neutron-rich beams e.g., ¹³²Sn at 250 MeV/u ~10⁸ particles per second
- Providing more exotic RIBs by combining ISOL and IF

Geographical information

12-17 August 2019 **NUSYS 2019** 3 **P** System installation plan

SCL1 has been postponed. SCL3 will play the role of SCL1 for IF in early stage operation.

P Facility construction plan (Buildings)

Some pictures of construction site

Milestones of RISP project

Accelerator systems

Major achievements

for IF: LTS (2016.01) & HTS First Oxygen beam (2017.01)QWR cryomodule acceleration with RFQ test completed (2016.12)(2017.05)**HWR** cryomodule test completed (2018.03)First Oxygen beam acceleration with QWR module, **Superconducting RF test** facility (2016.06) SCL Demo (2017.10) **High purity Sn beam** extraction using RILIS (2015.12)

Low temperature test of quadrupole prototype magnets

RIB production modes at RAON

	KOBRA (low-energy IF)	ISOL	IF (high energy)			
Driver	(ECR) SCL3	Cyclotron	(ECR) SCL3→SCL2			
Post accelerator		SCL3 (ultimately SCL3→SCL2)				
Production mechanism	 Direct reactions like (p, d), (³He, n), etc. Multi-nucleon transfer 	p induced U fission	PF, U fission			
RIB energy range	a few tens MeV/u	> a few keV/u	a few hundreds MeV/u			

Various high-intensity RIBs in wide energy range are expected from RAON.

Expected RIBs at RAON

RAON aims to provide an access to unexplored regions of nuclear chart.

P Expected RIBs at RAON

J.W. Shin et al., NIMB349, 221 (2015)

- \square Yield ratio: 132 Sn+ 9 Be/ 238 U+ 9 Be
- ☐ ISOL+IF is beneficial, for example, for n-rich isotopes for $45 \le Z \le 50$

Experimental systems

(KOrea Broad acceptance Recoil spectrometer and Apparatus)

Conceptual design Prototype & test Manufacturing Installation & Operation

2011~2012 ~2017.9 ~2019.4 ~2020.12 2021.1~

- ☐ The first part of stage1 (stage1 part1) was contracted with foreign & domestic companies in April 2018. (Presently, the parts are being produced.)
- \Box The stage1 will be installed in the low-energy Expt. hall (E1) by the end of June 2020.
- \square The commissioning of Stage1 will start in the beginning of 2021 with stable ion beams.

PPAC

- Two 10x10 cm², two 20x20 cm², and one 40x20 cm² active area PPACs were built.
- Four 10x10 cm² and one 40x20 cm² PPACs will be built in addition.

SSD

- Two 16 Channel detectors with 5x5 cm² active area and 50 μm thickness
- Energy resolution \sim 0.7% and S/N \sim 272 for 5.5 MeV α in vacuum

Plastic scintillator detector

- Two detectors read out both ends with 10x10 cm² active area and 100 μm thickness
- Time resolution < 42 ps for 5.5 MeV α in vacuum

P LAMPS: Large-Acceptace MultiPurpose Spectrometer

Brief history of LAMPS

Brief history of LAMPS

Stable-ion initiation modes

- $ECR \rightarrow SCL3 \rightarrow SCL2 \rightarrow LAMPS$
- $ECR \rightarrow SCL3 \rightarrow SCL2 \rightarrow IF Target$ **→LAMPS**

RIB initiation modes

- (iii) ISOL→SCL3 →SCL2→LAMPS
- (iv) ISOL \rightarrow SCL3 \rightarrow SCL2 \rightarrow IF Target **→LAMPS**

LAMPS will cover maximal area of beam species in the nuclear chart.

Physics goal: EoS and symmetry energy

- General approach
 - Investigate the energy per nucleon $E/A = \varepsilon(\rho, \delta)$ as functions of baryon density ρ and isospin asymmetry $\delta = (N-Z)/(N+Z)$:

$$\varepsilon(\rho,\delta) = \varepsilon(\rho,\delta=0) + E_{sym}(\rho)\delta^2 + \mathcal{O}(\delta^4) + \cdots$$

with $E_{sym}(\rho)$ the symmetry energy

- Theoretical approach
 - Calculate $\varepsilon(\rho, \delta)$ by some density functionals or variational calculations
- Experimental approach
 - Constrain EoS and $E_{sym}(\rho)$ using controlled laboratory experiments at specific ρ

Physics goal: Nuclear phase diagram

- Why are we doing heavy-ion collision experiment?
 - → Only way to create dense (and hot) nuclear matter at laboratories
- Why are we using RI beams for heavy-ion collision?
 - \rightarrow Only way to control the isospin parameter (N/Z) of matter

Time Projection Chamber (TPC)

Original design

- 3-D tracking device for charged particles
- Large acceptance ($\sim 3\pi$ sr)
- Symmetric in azimuthal angle
- Triple GEM system for amplification
- Read readout at both endcaps
 (Total # of channels ~30k)

Simulation of a central Au+Au event at 250 AMeV (IQMD)

TPC: Prototype design

[Readout Pads]
Tested pads with the two different dimensions

 $3 \times 10 \text{ mm}^2$: 357 Ch/Sec $4 \times 15 \text{ mm}^2$: 175 Ch/Sec Multi-layer PCB board

[GEM Foil]

Trapezoidal shape

Thickness: 75 µm

Area: $166 \times 118 \text{ mm}^2$

Triple layers for each plane

Developed for CMS at LHC

[Field Cage]

 $35~\mu m$ thick and 2 mm wide Cu strips $500~\mu m$ gap between adjacent strips

Mirror strips on the back

1 $\mbox{M}\Omega$ resistors with 0.1% variance

TPC body: G10 + Aramid honeycomb

Inner field cage installed

Prototype TPC completed

12-17 August 2019

- ☐ ELPH: Research Center for Electron Photon Science at Tohoku University, Japan
- □ Dates: November 2016
- \square Beams: e^+ beams at 500 MeV
- ☐ Gas: Ar(90%)+CH₄(10%) (P10) Ar(90%)+CO₂(10%) (ArCO₂)
- \square Purpose: To study the detailed characteristics, such as v_{drift} , diffusion and σ_x , of LAMPS TPC

TPC: Position resolution

• ELPH beam test

- Beam height: 20.24, 35.24 & 50.24 cm
- Electric field:
 115~155 V/cm for Ar-CH₄(90:10)
 170 V/cm for Ar-CO₂(90:10)

Cosmic-ray muon test

- Trigger counter: 4 cm & 20 cm
- Electric field:
 155~175 V/cm for Ar-CH₄(90:10)
 155~205 V/cm for Ar-CH₄(80:20)

- $v_{drift} \lesssim 5.3 \text{ cm}/\mu\text{s}$ for P10 from the beam test: Maximum distance: 512 timing bins \times 0.04 $\mu\text{s}/\text{bin} \times 5 \text{ cm}/\mu\text{s} \cong 100 \text{ cm}$
- P20 with cosmic muons: $v_{drift} > 6$ cm/ μ s that is suitable for LAMPS TPC if we want to read out signals only from the upstream endcap.

• Pad dim.: $\sim 3 \times 10 \text{ mm}^2$

• # of Ch.: 2,618/sector × 8 sectors = 20,944

• FEE: 11 AsAD/sector × 8 sectors = 88 AsAD

• Final design of readout, gas vessel, and field cage is in progress.

- Readout will be only at the upstream endcap.
- P20 with v_{drift} > 6 cm/ μ s covers entire readout time of GET over full drift length
- Inner radius: $150 \rightarrow 100$ mm, Outer radius: $500 \rightarrow 535$ mm
- Maximize the active region for $R = 105 \sim 503.5 \text{ mm}$
- Test of the real-size GEM foil is underway.
 - If gain is too small, the quadruple GEM configuration will be tested.
- LAMPS TPC will be constructed in 2019-2020 and tested by 2021.

P Neutron detector array

Neutron detector: Beam test at RCNP

- ☐ E479 approved in B-PAC in March 2016
- ☐ Date: May 2016
- ☐ Beam specifications
 - Protons on Li production target (p+ 7 Li \rightarrow n + 7 Be)
 - Neutron energies: 65 and 392 MeV in N0 beamline
 - 10 nA flux \times 1/9 chopping
 - Background neutron above 3 MeV is less than 1% [NIMA629, 43 (2011)]

29

Neutron detector: Beam test at RCNP

- Distance from target to the detector: 15 m
- ☐ Gap between stations: 60 cm
- \square Dim. of each S1 detector: $10 \times 10 \times 100$ cm³
- \square Dim. of each S2 detector: $10 \times 10 \times 200$ cm³
- Beam size at S1: 25 \times 30 cm²

Neutron detector: Energy resolution

- Large energy loss in Li target at 65 MeV
- Low-energy background dominated by the 3-body decays $^{7}\text{Li}(p, n^{3}\text{He})^{4}\text{He}$
- Energy resolution (FWHM):
 - 3.1% @ 392 MeV
 - ⇔ 3.4% without background subtraction
 - □ 1.3% @ 65 MeV

Neutron detector: Position resolution

- Hit position difference between D1 and D2 for neutrons with simultaneous hits: $\Delta x_{S1} \equiv x_{D1} x_{D2}$ for 10 MeV threshold and $\delta t < 3$ ns
- Relative position resolution for neutrons for one bar:

$$\sigma_n = \frac{\sigma(\Delta x_{S1})}{\sqrt{2}} = 4.5 \text{ cm}$$
: $R_x(n) = 7.5 \text{ cm}$ (FWHM)

- Position difference between the projected and hit positions for cosmic muons: $\Delta x_4 \equiv x_{D4,proj} x_{D4,hit}$
- Relative position resolution for cosmics for one bar:

$$\sigma_{\chi} = \frac{\sigma(\Delta x_4)}{1.87} = 2.0 \text{ cm}: R_{\chi}(\mu) = 4.8 \text{ cm (FWHM)}$$

 Δx_{4} (cm)

P Neutron detector: Performance

Characteristics of prototype LAMPS neutron detectors

Data	Cosmic muons	Neutron beams at 65 MeV	Neutron beams at 392 MeV					
Time resolution (ps)	309							
Position resolution (cm)	4.8	7.6	7.5					
Energy resolution (%)		1.3	3.1					
Efficiency (%)		9.0 ± 1.6	6.3 ± 1.0					

Comparison of performance for similar kind of neutron detectors

	LAMPS (this work)	MoNA [13]	NEBULAR [14]	LAND [15]			
Dimensions (cm ³)	$10 \times 10 \times 200$	$10 \times 10 \times 200$	$12 \times 12 \times 180$	$10 \times 10 \times 200$			
Time resolution (ps)	309	423	376	588			
Position resolution (cm)	4.8	5.2	6.1	7.1			

- [13] William Alexander Peters, Study of neutron unbound states using the modular neutron array (MoNA) (Ph.D. thesis), Michigan State University, 2007.
- [14] Y. Kondo, https://indico2.riken.jp/event/407/contributions/9052/attachments/5776/6707/SAMURAI-intWS-NEBULA-web.pdf.
- [15] O. Yordanov, et al., Nucl. Instrum. Methods B 240 (2005) 863.

H.H. Shim et al., NIMA 927, 280 (2019)

Neutron detector: Frame

Light-tight PMT clamps

Neutron detector: Module preparation

Neutron detector: Assembly

- Installation of all modules (160 detectors + 20 vetos) in the frame was completed at the Sejong campus Lab. of Korea University in Dec. 28, 2018.
- Cosmic muon test just started.
- Detector operation can be remotely done in Seoul.

Status of the LAMPS Collaboration

RISP/IBS: Young Jin Kim, Hyo Sang Lee, Min Sang Ryu

Korea University: Jung Keun Ahn, Byungsik Hong, Young Seub Jang, Jiseok Kim, Minho Kim, Jong-won Lee, Jaehwan Lee, Jung Woo Lee, Kyong Sei Lee, Byul Moon, Benard Mulilo, Seon Ho

2019

Nam, Jaebeom Park, Jeonghyeok Park, Hyunha Shim

Chonbuk Nat. University: Eun-Joo Kim

Chonnam Nat. University: **Dong Ho Moon**, SeongHak Lee

2018

Inha University: Min Jung Kweon, Hyungjun Lee Sejong University: Yongsun Kim, Hyebin Song

Jeju Nat. University: Jong-Kwan Woo

KRISS: Sanghoon Hwang

- 6 Korean Universities and 2 Institutes
- 27 Collaborators including 7 Profs., 7 research staffs and 13 students
- Globalization is needed!

2020

• Contact me at bhong@korea.ac.kr if you're interested in the project.

2021

2022

1	System	2010 2019			1.7	1.5		2020		ZUZ I				2022		
		3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q
Milestone LAMPS building production e construction completed finished								end c	of RISP							
	Solenoid maget			manufa desi	- 1		produ	ction			ance test					
	IF-LAMPS baem line magnet				<u></u>	technica	al design		production	n	performance test					
	TPC system		 {	TPC GEM,	gas vessel,	field cage p	production	TPC as	ssembly	perform	ance test				-	
LAMPS	Neutron Detector Array		4		cosmic test	Ġ		experimen	atl test (e.g	in KOBRA)	4		installatio	n		
	Beam line/beam diagnostic detector		 { 	simul	lation, R&D	d	lesign	†	production		performance test		& test		commissir	ng
	Target system			Sili	mulation, R	&D	desi	ign	production	ion	performance test				-	
	ToF/Trigger detector			simulati	on, R&D	des	sign	produ	uction	perforr	mance test					
	DAQ		 {)	individual	DAQ R&D		optimaiz	ation	integrat	tion					
		==	$\overline{}$							\leftarrow						-

P Revival on low-energy Expts. by LAMPS

Center for Extreme Nuclear Matters (Director: B. Hong) Supported by the National Research Foundation of Korea (NRF) via the "Science Research Center for Excellency" program from 2018 (Total 7 years and possible extension after evaluation)

- Three groups
 - ☐ Group 1 : High-energy heavy-ion collisions
 - ☐ Group 2 : Hadron physics
 - ☐ Group 3 : Radioactive ion beam physics
- Members
 - □ 9 professors, >15 postdocs & research staffs, >30 students
- Research center is independent of RISP/IBS, but ...
 - □ Experimental professors in CENuM are very much interested in the lowenergy experiments at RAON in early operational phase.
 - ☐ Therefore, CENuM started to develop some essential detector components for the low-energy nuclear experiments at RAON:
 - LaBr₃(Ce) gamma detector system
 - AT-TPC & Superconducting solenoid magnet
 - FAZIA type Si-CsI detector system

P Revival on low-energy Expts. by LAMPS

- LaBr₃(Ce) gamma detector system
 - Fast timing PMTs (R_t < 200 ps, R_E < 3.5%, ε ~6.8% at 664 keV)
 - Total 24 modules (Plan to build 12 modules by 2020 and additional 12 by 2021)

- Superconducting solenoid magnet: 1.5 T,
 inner radius & length = 60 cm each
- Magnet construction in 2019
- AT-TPC construction by 2021

FAZIA Si-CsI detector

- Excellent isotope separated PID up to $Z \simeq 25$
- Very useful for low-energy experiments at RAON

Figure borrowed from R. Bougault's presentation at IWND

- □ Rare Isotope Science Project (RISP) at IBS is the first large-scale nuclear physics project in Korea.
- The civil engineering, accelerator development, and detector construction for RAON have been aggressively progressed.
- □ LAMPS is a dedicated spectrometer for nuclear EoS and symmetry energy at RAON.
- Various components for LAMPS, including TPC, neutron detector array, magnet, are making a very good progress.
- □ Expect to finish the detector construction in about
 2-3 years for nuclear experiments at early stage.