Nuclear Astrophysics with low-energy RI beams

Lecture by Hidetoshi Yamaguchi 山口英斉 from Center for Nuclear Study (CNS), the University of Tokyo/ National Astronomical Observatory of Japan

NUSYS@Lanzhou

Lecture #3

- ¹⁰Be+α and linear chain with TTIK (continued)...main interest on nuclear cluster structure
- Trojan Horse Method (THM)
 - How it works
 - ¹⁸F(p,α) S. Cherubini et al., Phys. Rev. C (2015)...The first THM+RI beam experiment in the world
 - *Pe(n,p) and (n,α) for cosmological ⁷Li abundance problem
- r-process study at RIKEN RIBF

H. Yamaguchi@NUSYS2019

Morinaga (1956) and linear chain

- Discussed on 4n-nuclei based on the alpha particle model
- Predicted linear-chains in ¹²C, ¹⁶O, etc., from their high momenta of inertia.

 It was shown in later studies that the Hoyle state is NOT a linear-chain state.

¹⁰Be+ α

- Linear-chain cluster levels in ¹⁴C were predicted in Suhara & En'yo papers.
- Asymmetric, ${}^{10}Be+\alpha$ configuration ...likely to be observed with ${}^{10}Be+\alpha$ alpha-resonant scattering.
- May form a band with J^π=0⁺,2⁺,4⁺a few MeV above α-threshold.
- Scattering of two 0⁺ particles...only *l*-dependent resonant profile.

Similar experiments independently conducted by Birmingham group [M. Freer et al., PRC 2014] and MSU group [A. Frisch et al., PRC 2016]

Cluster bands

• Predicted energy...few MeV above the $^{10}\text{Be}+\alpha$ threshold

Linear chain states $K=0^+$ $K=0^-$ in the calculation by
Suhara&En'yo (2010)Prolate rotational bands
in Oertzen et al., (2004)

H. Yamaguchi@NUSYS2019

Experimental setup

Thick target method in inverse kinematics, similar to the previous ⁷Be+ α .

- •Two PPACs for the beam PI, trajectory, number of particles.
- •Two silicon detector telescopes for recoiling α particles.
- • E_{cm} and θ obtained by event-by-event kinematic reconstruction.

Excitation function

- The excitation function we obtained for 13.8-19.2 MeV exhibits many resonances.
- R-matrix analysis performed, and some of the resonance parameters (E, J^π, Γ_α) were determined.

H. Yamaguchi@NUSYS2019

Result of the linear chain search

H. Yamaguchi^{a,*}, D. Kahl^{a,b}, S. Hayakawa^a, Y. Sakaguchi^a, K. Abe^a, T. Nakao^{a,c}, T. Suhara^d, N. Iwasa^e, A. Kim^{f,g}, D.H. Kim^g, S.M. Cha^f, M.S. Kwag^f, J.H. Lee^f, E.J. Lee^f, K.Y. Chae^f, Y. Wakabayashi^h, N. Imai^a, N. Kitamura^a, P. Lee^f, J.Y. Moon^{j,k}, K.B. Lee^j, C. Akers^j, H.S. Jung^{*}, N.N. Duy^{1,m}, L.H. Khiem¹, C.S. Lee^j

H. Yamaguchi@NUSY__

Rotational Band

The set of resonances we observed (0+, 2+, 4+) is proportional to J(J+1) ... consistent with a view of rotational band.

Also perfectly consistent with the theoretical prediction.

Experiments in other facilities

Results on two other ${}^{10}\text{Be}+\alpha$ TTIK experiments were published before our publication was made.

- M. Freer et al., Phys. Rev. C (2014) Birmingham group+ at ORNL
 - High-intensity ¹⁰Be beam, spectrum at very forward angle, no PI

Agreement over Ex>16 MeV, in spite of the difference in the absolute c.s.

- A. Fritsch et al., Phys. Rev. C (2016) MSU group at Notre Dame
 - Low-intensity ¹⁰Be beam, Active target, only side angles.

Cannot compare directly, but not good agreement? *H. Yamaguchi@NUSYS2019*

FIG. 11. (Color online) R -matrix fit to the data in the region between $E_x = 16.5$ and 22 MeV (red-solid and blue-dashed lines). The difference between the two fits is the inclusion of an additional 4^+ state in the calculation shown by the red line. See Tablefor the parameters of fits 1 and 2.

 E_{cm} = E_x -12 MeV

Baba and Kimura (2016 & 2017)

Another AMD calculation,

" π -bond" linear chain band, consistent with 3 experiments " σ -bond" linear chain band at higher energy (studied by Peking Univ. group).

H. Yamaguchi@NUSYS2019

How certain are the linear-chain states?

 Identification of the 0⁺ state...1⁻ was excluded with 3σ significance, but the error can be systematic.

- Background subtraction
- Inelastic scattering?
- We planned the 4th experiment at INFN-LNS (Catania, Italy):
 - ♦ With offline-production ¹⁰Be beam
 - ◆Inelastic scattering separation with TOF.

⇒Performed in Oct., 2018.

The "CHAIN" experiment at INFN-LNS (Catania, Italy)

¹⁰Be+ α with more intense beam, higher energy and angular resolution: ~2 weeks beamtime.

Investigation of α -chain structures in ¹⁴C.

H. Yamaguchi¹, A. Di Pietro², R. Dressler³, J. P. Fernández-García⁴, P. Figuera², S. Hayakawa¹, S. Heinitz³, D. Lattuada⁵, M. Lattuada^{2,6}, E. Maugeri³, M. Milin⁷, H. Shimizu¹, A. C. Shotter⁸, D. Shumann³, N. Soic⁹, D. Torresi², L. Yang¹ M. Zadro⁹,

¹ Center for Nuclear Study (CNS), University of Tokyo, RIKEN, Wako, Japan

² INFN, Laboratori Nazionali del Sud, Catania, Italy

⁴ Paul Scherrer Institute, Villigen, Switzerland

³ Departamento FAMN, Universidad de Sevilla, Sevilla, Spain.

⁵ Extreme Light Infrastructure - Nuclear Physics (ELI-NP), IFIN-HH, Magurele, Romania

⁶ Dipartimento di Fisica e Astronomia, Catania, Italy

⁷Physics Department, Faculty of Science, University of Zagreb, Zagreb, Croatia

⁸ School of Physics and Astronomy, University of Edinburgh, UK

⁹ Ruđer Bošković Institute, Bijenička, Zagreb, Croatia

Abstract

We propose to measure the excitation function for the elastic scattering process ${}^{10}\text{Be}+{}^{4}\text{He}$, in order to shed some light upon the existence of linear-chain cluster states in the n-rich ${}^{14}\text{C}$ nucleus. These states are expected to have a configuration in which ${}^{10}\text{Be}$ and α are spatially separated, and thus they can be observed by the ${}^{10}\text{Be}+\alpha$ resonant elastic scattering. In order

Experiment at Catania, Oct. 2018

Result (very preliminary)

VS

LNS(Tandem)

Including 0-8 deg events

@5 deg, No normalization for the effective target thickness/absolute cross section yet

Need of indirect method

Stellar reaction cross section often has a strong dependence on energy (or temperature), changing by orders of magnitude.

...This is because of the tunneling probability of the Coulomb barrier.

Experimentally, this causes much trouble. We need a clever way.

H. Yamaguchi@NUSYS2019

H. Yamaguchi@NUSYS2019

The ¹⁸F(p, α) project (with THM)

- ¹⁸F(p,α)... an astrophysical reaction important in novae, and other high-T environments.
- Measurement with the Trojan Horse Method performed in 2008 ... The first THM+RI beam experiment in the world.
- The RI Beam at CRIB (after development): Primary beam: ¹⁸O ⁸⁺, 4.5-5 MeVA
 Production target: H₂
 Production reaction: ¹⁸O(p,n)¹⁸F
 Purity nearly 100%
 - Intensity $> 5 \times 10^5 \text{ pps}$

A NOVA MICKEY MOUSE PICTURE AND ${}^{18}F(p,\alpha){}^{15}O$

Thin hydrogen surface layer accumulated on white dwarf through accretion ring Observed γ - rays come from e tet et come from ¹⁸F decay mostly At novae temperatures (100-500 keV) ¹⁸F can be mainly destroyed by $18F(p,\alpha)^{15}O$

Kinematics ²H **N**_{Spectator} ²H(¹⁸F,α ¹⁵O)n S 15**0** С X ÷ p $E(^{18}F) = 50 MeV$ B d ⁴He 18**F** 30 $E_{a}(MeV)$ స్థ 40 20 20 10 0 20 5 30 10 0 40 50 ϑ_{150} $E_{150}(MeV)$

THM measurement: ${}^{18}F(p,\alpha) {}^{15}O$ via ${}^{2}H({}^{18}F,\alpha {}^{15}O)n$

Assuming that a Quasi-free mechanism is dominant one can use the (PW)IA:

EXPERIMENTAL IMPULSE DISTRIBUTION

THM(=barriers free) CROSS SECTION

S(E) from THM 8 keV 3/2+

FIG. 3. The ¹⁸F(p, α)¹⁵O S factors, calculated using the R matrix, for eight possible interference terms. The range in possible S factors arises from the interference between the $J^{\pi} = 3/2^+$ resonances. The interference between resonances dominates in the region of interest, resulting in four groups of S-factor curves. The upper and lower curves of each group are shown in the figure. The legend gives the assumed phase, for the 8-, 38-, and 665 keV resonances, respectively, for each pair of curves. Also plotted are the measured S factors from this work, those from previously published data [4,10,12,19], and the proposed contribution from 1/2+ states predicted in Ref. [6]. Direct data...C.E. Beer, et al.

⁷Be(n,p)⁷Li and the ⁷Be(n,α)⁴He reactions with THM for cosmological lithium problem

<u>S. Hayakawa¹</u>, M. La Cognata², L. Lamia², H. Shimizu¹, L. Yang¹, H. Yamaguchi¹, K. Abe¹, O. Beliuskina¹, S. M. Cha⁴, K. Y. Chae⁴, S. Cherubini^{2,3}, P. Figuera^{2,3}, Z. Ge⁵, M. Gulino^{2,6}, J. Hu⁷, A. Inoue⁸, N. Iwasa⁹, D. Kahl¹⁰,

A. Kim¹¹, D. H. Kim¹¹, G. Kiss⁵, S. Kubono^{1,5,7}, M. La Commara^{12,13}, M. Lattuada^{2,3}, E. J. Lee⁴, J. Y. Moon¹⁴,

S. Palmerini^{15,16}, C. Parascandolo¹³, S. Y. Park¹¹, D. Pierroutsakou¹³, R. G. Pizzone^{2,3}, G. G. Rapisarda²,

S. Romano^{2,3}, C. Spitaleri^{2,3}, X. D. Tang⁷, O. Trippella^{15,16}, A. Tumino^{2,6}, P. Vi⁵ and N. T. Zhang⁷

¹Center for Nuclear Study (CNS), University of Tokyo, ²INFN - Laboratori Nazionali del Sud,

³University of Catania, ⁴Sungkyunkwan University, ⁵RIKEN Nishina Center, ⁶Kore University of Enna,

⁷Institute of Modern Physics, Chinese Academy of Sciences, ⁸Research Center for Nuclear Physics (RCNP), Osaka University, ⁹Tohoku University, ¹⁰University of Edinburgh, ¹¹Ewha Womans University,

¹²University of Naples Federico II, ¹³INFN – Naples, ¹⁴Institute for Basic Science (IBS),

•¹⁵INFN - Perugia, ¹⁶University of Perugia

+ many others

Cosmological ⁷Li problem

- ⁷Li problem... disagreement between theory and observation by a factor of 3–4
 - Due to CMB obs.? Low-metallicity stars obs.? Standard BBN model? Nuclear Physics?
 - ⁷Be abundance in the end of BBN determines ⁷Li predominantly
 - $p(n,\gamma)d$, ³He(d,p)⁴He, ⁷Be(n,p)⁷Li, ⁷Be (n,α) ⁴He, ⁷Be(d,p)2 α , etc.
- Temperature ~ 10¹⁰ 3 × 10⁸ K, Energy: 1 MeV 25 keV

Trojan Horse Method for RI + neutron

Trojan Horse method: (Spitaleri+ Phys. Atom. Nucl. 2011)
 ⁷Be(n,p)⁷Li, ⁷Be(n,α)⁴He via ²H(⁷Be,⁷Lip)¹H, ²H(⁷Be,αα)¹H
 PWIA applicable when Quasi-free mechanism is dominant

⁷Be(n, p)⁷Li (Q = 1.644 MeV)

- Sensitivity: $\partial \log Y_{7\text{Li}} / \partial \log \langle \sigma v \rangle_{7\text{Be}} = -0.71$ (Coc & Vangioni 2010, Cyburt+ 2016, etc.) If 5 × higher rate \Rightarrow ⁷Li problem solved
- Direct measurement up to 13.5 keV, time-reversal reactions at higher energies.
- R-matrix analysis: Adahchour & Descouvemont 2003.
- New n_TOF measurement: enhancement below BBN energies (Damone+ PRL 2018)

⁷Be(n, α)⁴He (Q = 18.990 MeV)

- Hou et al. PRC 2015: evaluation from ⁴He(α,p)⁷Li
- Barbagallo et al. PRL 2016: s-wave measurement @ nTOF
- Kawabata et al. PRL 2017: p-wave measurement @RCNP
- Lamia et al. APJ 2017: evaluation of ⁷Li(p,α) data measured by THM.
- Recent works consistent... Yet no direct data in the BBN range.

Experimental setup

- YBe beam:

 22.12 ± 0.1 MeV

 on target

 PPAC a

 Tracking

 PiD
 - 6 ΔE-E position sensitive silicon telescopes
 - ⁷Li-p and α-α coincidence measurements
 ... spectator not measured

- CD₂: 64 µg/cm²
- $\Rightarrow \Delta E_{\text{beam}} \sim 150 \text{ keV}$
- To resolve $E_x(^7\text{Li}^{1\text{st}}) = 478 \text{ keV}$

• Hamamatsu Charge-division PSD: position resolution ~ 0.5 mm

→ Total angular resolution (PPACs & PSDs & alignment) $\sim 0.5^{\circ} \Rightarrow \Delta E_{cm} \sim 60 \text{ keV}$

Momentum distributions of the spectator p

 $Y_{exp}/Y_{sim} \propto d^3\sigma/(d\Omega_p d\Omega_{7Li} dE_{cm}) / KF \propto |\Phi(p_s)|^2 d\sigma/d\Omega$

~ $|\Phi(p_s)|^2$ at a fixed $E_{c.m.}$ and $\theta_{c.m.}$ (\Leftrightarrow 2-body cross section is const.)

Good agreement up to 60 MeV/c Evidence that quasi-free contribution is dominant. \rightarrow THM is valid!

Q-value spectra of the 3-body channels

Gaussian fitting to Q-value spectra

- Isotropy assumed (as no strong angular dependence seen)
- Checked systematic change of widths & peaks

Reduces errors

⁷Be(n,p₀), (n,p₁) & (n, α_0) cross sections by CRIB

(Preliminary) R-matrix fitting by AZURE2

 \square Fit Only $E_{c.m.} < 1.2 \text{ MeV}$

- Fix converged parameters and iterate.
- ✓ χ² converged (preliminary): χ²_{p0}/NDF = 1.59, χ²_{p1}/NDF = 1.33, χ²_α/NDF = 0.68

Revised ⁷Be(n,p) Reaction rate

How to study r-process experimentally?

- r-process path nuclei...very neutron rich, still hard to study
- RIKEN RIBF can produce some of them, but not with a high intensity (i.e. too few to make a reaction study)

→ What we can do first is to study the basic properties of nuclei, such as mass and lifetime.

Nucleosynthesis of Heavy Elements (r-Process)

Sensitivity study of decay properties in r-process

Beam Production & DecayStation

Nishimura et al. PRL106, 052502 (2011)

Summary

- Experimental information is essential for understanding stars and other phenomena in the universe
- Study on astrophysical reactions with (low-energy) RI beams: Not easy, but possible for some cases. Successful cases:
 - Direct measurement (for large cross section reaction)
 - Resonant scattering to study resonances (with TTIK)
 - Indirect methods (such as THM and Coulomb dissociation)
 - Mass/lifetime measurements
- CRIB at CNS, the University of Tokyo, providing unique lowenergy (<10MeV/u) RI beams...we welcome new collaborators and new ideas.

http://www.cns.s.u-tokyo.ac.jp/crib/crib-new/

Homework (In-flight RI beam)

[1] A ⁷Be beam is created by the in-flight method, using a ⁷Li beam (mass: M_b) at an energy of E_b and a hydrogen (Mass M_t) target. How much is the maximum angle deviation of the produced ⁷Be particle from the original ⁷Li beam trajectory?

For simplicity, you can assume

-The maximum angle deviation occurs when $\theta_{c.m.}$ is close to 90°.

-Q-value in the production reaction (p,n) is negligible. (⁷Li/⁷Be masses are the same.)

-The energy loss in the target is ignorable.

Hint) You can use the formula, $\cos\theta_{\text{lab}} = \frac{x + \cos\theta_{\text{c.m.}}}{\sqrt{1 + x^2 + 2x\cos\theta_{\text{c.m}^2}}}$, $x = \frac{M_b}{M_t}$

Homework

[2] When the ⁷Li beam energy is $E_{\rm b}$ = 10MeV/u (~70 MeV) and ⁷Be produced with the angle $\theta_{\rm lab}$ < 3° is accepted, how much is the energy spread $\Delta E_{\rm e}/E_{\rm e}$? Here we define $\Delta E_{\rm e}$ as the energy difference of the ⁷Be beam particle at 0° and 3°.

Hint) Consider energy -momentum conservation.

Homework (TTIK)

[1] Suppose we make a scattering experiment by irradiating a beam (kinetic energy $E_{\rm b}$, mass $M_{\rm b}$) onto a target (Mass $M_{\rm t}$). Show that the center-of-mass energy $E_{\rm c.m.}$ (energy of the system in the center-of-mass frame) at the scattering is given by the following formula for non-relativistic energy:

Hint) In c.m. frame, the sum of the momentum vectors will be zero.

Note) This result implies that the $E_{c.m.}$ resolution can be better than the uncertainty of the beam energy in the inverse kinematics condition, $M_b > M_t$.

Homework

[2] In the resonant scattering experiments in inverse kinematics, we measure the energy and the angle of the recoiling ion, E_r and θ . First we consider a thin-target case, where the energy loss in the target is negligible.

Assuming the particle masses and the beam energy $E_{\rm b}$ are known, how do you obtain the $E_{\rm c.m.}$ of the scattering events from the measured quantities? _{a)}

Homework

[3] How the formula can be modified when we use a thicktarget in which the beam energy is significantly degraded. (Can we still obtain $E_{c.m.}$ from the measured E_r and θ ?)

[4] What are the advantages and disadvantages of the TTIK (thick-target in inverse kinematics) method, as compared to the traditional, normal kinematics method?