

Design of the Pixel Analog

Ying ZHANG

30 April 2019, Chip design review on CEPC Vertex Detector of MOST2 project

Specifications of Pixel Cell

Spatial resolution: 3-5 μm (MOST2)

- \triangleright Pixel size: < = 25 µm \times 25 µm
- Expect to be smaller for the final goal
 (2.8 µm for final CEPC innermost layer)
- → compact structure and layout
- Power density < 200 mW/cm²
 - > must work continuously
 - → Low static current of front-end

Minimum bunch spacing 25 ns

Time stamp of the hit is added at EOC
 Small Time walk (time difference between bunch crossing time and leading edge of hit pixel signal)

Design of Sensor

- Goal: high Q/C (collected charge/sensor capacitance)
 - Small collection electrode → low C
 - ≻ High charge collection efficiency → high Q
- Process options:
 - > High resistivity sensitive layer (> 1 k Ω cm)
 - Deep p-well shielding n-well to allow full CMOS

Modified process

additional low doped n-layer

full depletion, faster charge coll. & better rad. tolerance

Design key points

W. Snoeys et al. DOI 10.1016/j.nima.2017.07.046

- > **Diode geometry optimization**, benefit from previous design (JadePix1)
 - 2-3 µm small electrode & large footprint
- > Reverse bias (~ 6V) → reduce C & increase depletion volume

- M2 acts as a source follower to avoid loading the input
- M3 is a cascode transistor to increase the gain on the output node and eliminate the Miller effect for the input node.
- The analog output node is stabilized at low frequencies by active feedback on the transistor M4
- Efficient current usage for the input (the same branch current powers the source follower and the amplification stage)
- M10: clipping of the analog pulse

Layout

Pixel size: 25 μm × 25 μm

- Sensor + Front-end occupy 45% pixel area
 - Smaller area possible
- > Shield from digital part to minimize crosstalk
- > Pixels are aside to separate analog and digital part
- > Two adjacent pixel analog share biasing signal routing

30 Apr. 2019, Design review of MOST2

Front-end simulation result (1)

Transient simulation:

- Post simulation with parasitic
 RCC of the front-end
- Analog power consumption
 130 mW/cm²
- Duration time (discriminator output) < 200 ns
- Time walk: time difference between time over threshold
 - ~33 ns @ 300e 4 ke-

Front-end simulation result (2)

Equivalent noise charge and threshold dispersion:

- ➤ Transient noise simulation with different input charges, 50 runs for each input, record number of "hit" → "S curve"
- → Charge threshold 181 e-, Equivalent noise charge: 7.1 e-

Threshold dispersion:

Monte Carlo simulation (mismatch) with different input charges, 100 runs for each input → threshold dispersion 4.4 e⁻

³⁰ Apr. 2019, Design review of MOST2

Summary

- A fast, compact pixel analog designed
- Preliminary post-simulation results satisfy the specs.
- Simulation and further optimization in progress

Thanks for your attention !

Backup slides

Time walk vs. power consumption

Delay of leading edge vs. input charge

30 Apr. 2019, Design review of MOST2

CMOS sensors: Large vs. Small collection electrode

Large collection electrode

M. Garcia-Sciveres and N. Wermes, arXiv:1705.10150

- Larger capacitance: C ≈ 300 400 fF
- Higher analog power, sensitive to crosstalk
- Uniform, strong drift field, high radiation tolerance and detection efficiency

$$\tau_{\rm CSA} = \frac{1}{g_{\rm m}} \frac{C}{C_{\rm f}} \qquad ENC_{\rm thermal}^2 = \frac{4}{3} \frac{kT}{g_{\rm m}} \frac{C^2}{\tau_{\rm f}}$$

- Smaller capacitance: $C \approx 3$ fF \rightarrow low power
- Less sensitive to crosstalk
- Longer drift paths
- Full depletion can be achieved by modifying the process → radiation tolerance increases

$$\frac{S}{N} \approx \frac{Q/C}{\sqrt{g_{\rm m}}} \sim \frac{Q/C}{\sqrt{P}} \implies P \sim \left(\frac{Q}{C}\right)^{-m}$$

B. Hiti et al. Development of the monolithic "MALTA" CMOS sensor for the ATLAS ITK out pixel layer TWEPP 2018

30 Apr. 2019, Design review of MOST2

Front-end simulation

Simulation condition: Cd = 2.5 fF, IBIAS = 440 nA

Delay of leading edge vs. input charge vs. charge collection time

