1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.

FIMP Dark Matter from Leptogenesis in Fast Expanding Universe

17 Aug 2021, 09:00
15m
Oral report 4. 中微子物理、粒子天体物理与宇宙学 Parallel Session IV:Neutrino, Astroparticle Physics and Cosmology

Speaker

Dr Zhi-Long Han (济南大学)

Description

Within the framework of canonical type-I seesaw, a feebly interacting massive particle (FIMP) $\chi$ is introduced as a dark matter candidate. The leptogenesis mechanism and dark matter relic density share a common origin via decays of Majorana neutrinos $N$. Provided an additional species $\varphi$ whose energy density red-shifts as $\rho_{\varphi}\propto a^{-(4+n)}$, the Hubble expansion rate is larger than the standard scenario, i.e., the Universe expands faster. The consequences of such a fast expanding Universe on leptogenesis as well as FIMP dark matter are investigated in detail. We demonstrate a significant impact on the final baryon asymmetry and dark matter abundance due to the existence of $\varphi$ for the strong washout scenario. While for the weak washout scenario, the effects of FEU are relatively small. We introduce scale factors $F_L$ and $F_\chi$ to describe the corresponding effects of FEU. A semi-analytical approach to derive the efficiency factors $\eta_L$ and $\eta_\chi$ in FEU is also discussed. The viable parameter space for success thermal leptogenesis and correct FIMP DM relic density is obtained for standard cosmology and FEU. Our results show that it is possible to distinguish different cosmology scenarios for strong washout cases.

Primary author

Dr Zhi-Long Han (济南大学)

Presentation materials