1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
19 December 2019
9号楼
Asia/Shanghai timezone

Parton Energy Loss and the Generalized Jet Transport Coefficient

Not scheduled
15m
9409 (9号楼)

9409

9号楼

华中师范大学

Description

We revisit radiative parton energy loss in deeply inelastic scattering (DIS) off a large nucleus within the perturbative QCD approach. We calculate the gluon radiation spectra induced by double parton scattering in DIS without collinear expansion in the transverse momentum of initial gluons as in the original high-twist approach. The final radiative gluon spectrum can be expressed in terms of the convolution of hard partonic parts and unintegrated or transverse momentum dependent (TMD) quark-gluon correlations. The TMD quark-gluon correlation can be factorized approximately as a product of initial quark distribution and TMD gluon distribution which can be used to define the generalized or TMD jet transport coefficient. Under the static scattering center and soft radiative gluon approximation, we recover the result by Gylassy-Levai-Vitev (GLV) in the first order of the opacity expansion. The difference as a result of the soft radiative gluon approximation is investigated numerically under the static scattering center approximation.
Master Student, PhD Student or Postdoc PhD Student
Presenter Yuanyuan Zhang
Publications Phys. Rev. D 100, 074031

Primary author

Yuanyuan Zhang (Central China Normal University)

Co-authors

Guang-You Qin (Central China Normal University) Prof. Xin-Nian Wang (Central China Normal University/Lawrence Berkeley National Laboratory)

Presentation materials

There are no materials yet.