1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
19 December 2019
9号楼
Asia/Shanghai timezone

Light Nuclei ($d$, $t$) Production in Au+Au Collisions at $\sqrt{s_{\rm{NN}}}$=7.7-200 GeV from the STAR experiment

19 Dec 2019, 11:50
20m
9409 (9号楼)

9409

9号楼

华中师范大学

Speaker

Ding-Wei ZHANG

Description

In high energy nuclear collisions, light nuclei can be regarded as a cluster of baryons and their yields are sensitive to the baryon density fluctuations. Thus, the production of light nuclei can be used to study the QCD phase transition, at which the baryon density fluctuation will be enhanced. For example, the ratio of proton ($N(p)$) and triton ($N(t)$) to deuteron ($N(d)$) yields, which is defined as $N(t)$$\cdot$$N(p)$/$N^2(d)$, could be used as a sensitive observable to search for the signature of the 1st order phase transition and/or QCD critical point in heavy-ion collisions [1]. In this talk, we will present the energy and centrality dependence of (anti-)deuteron and triton production in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, and 200 GeV measured by the STAR experiment at RHIC. Especially, the new results from 54.4 GeV high statistics data allow us to examine the previously observed hint of a non-monotonic behavior in the neutron density fluctuations around 20 GeV with much better precision. Further, we will show the beam energy dependence for the coalescence parameter $B_2(d)$ and $B_3(t)$, particle ratios ($d/p$, $t/p$, and $t/d$), and the yield ratio of $N(t)$$\cdot$$N(p)$/$N^2(d)$. Their physics implications on QCD critical point search and change of equation of state will be discussed. [1] K. J. Sun, L. W. Chen, C. M. Ko, J. Pu, and Z. Xu, Phys. Lett. B 781, 499 (2018).
Presenter Dingwei Zhang
Publications No
Master Student, PhD Student or Postdoc PhD Student

Primary author

Presentation materials

There are no materials yet.