1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an Indico account through https://login.ihep.ac.cn/registIndico.jsp. Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 50 Mb.

R&D progress of high granularity HCAL for CEPC

Aug 9, 2022, 3:45 PM
15m
Oral report 粒子物理实验技术 Parallel Session I (5):Particle Detector Technology

Speaker

Dr Peng Hu (Institute of High Energy Physics)

Description

Based on the particle-flow paradigm, a novel hadronic calorimeter (HCAL) with high granularity is proposed to address major challenges from precision measurements of jets at future lepton collider experiments, such as the Circular Electron Positron Collider (CEPC). Two technical options have been considered for the HCAL design: one is the digital readout scheme (DHCAL), which uses either glass resistive plate chambers (GRPC) or thick gas electron multiplier detectors (THGEM) as the active medium; the other is the analog readout scheme (AHCAL), which uses either plastic scintillators or glass scintillators as the active medium. Among all these designs, the glass scintillator HCAL design aims for further significant improvements of the hadronic energy resolution as well as the particle-flow performance, especially in the low energy region (typically below 10 GeV for major jet components), with a notable increase of the energy sampling fraction due to its high density. A great number of efforts have been devoted to the HCAL design, including the construction and standalone simulation of HCAL prototypes as well as the full simulation in the CEPC software framework. Physics benchmark potentials with jets in the final state are also being evaluated using a Particle-Flow Algorithm (PFA), named "ArborPFA". In this contribution, the latest R&D progress of high granularity HCAL, especially the glass scintillator scheme, will be introduced

Primary authors

Dejing Du (IHEP) Dr Peng Hu (Institute of High Energy Physics) Dr Sen Qian (高能所) Dr Yong Liu (Institute of High Energy Physics) Zhehao Hua (IHEP)

Presentation materials