1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an Indico account through https://login.ihep.ac.cn/registIndico.jsp. Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 50 Mb.

A Novel Reconstruction Method for Atmospheric Neutrinos in Large Liquid Scintillator Detectors with Machine Learning Technique

Aug 11, 2022, 2:40 PM


Hongyue Duyang (Shandong University)


Large liquid scintillator detectors such as JUNO play an important role in particle physics. They typically provide low-threshold, high-precision energy measurements, but their ability in getting other event informations, especially the particle direction, is limited with traditional reconstruction methods. These informations are critical to atmospheric neutrino oscillation analysis, which offers independent sensitivity to neutrino mass ordering for JUNO. In this talk we present a novel method for the reconstruction of atmospheric neutrino events in JUNO and other large liquid scintillator detectors, by extracting features from PMT waveforms and use them as inputs to machine learning models. This method is able to reconstruct multiple objects, including direction, energy, interaction vertex, event type, etc., and has the potential to achieve better resolution than traditional methods. The performance of this method using JUNO simulation will be presented.

Primary author

Hongyue Duyang (Shandong University)


腾 李 (Shandong University)

Presentation materials

There are no materials yet.