Speaker
志鹏 姚
(Shandong University)
Description
超级陶粲装置(STCF)是中国未来的正负电子对撞机,其质心能量范围为2-7 Gev,峰值亮度可达$0.5\times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} $。在STCF中,许多物理过程的末态粒子动量较高,这便对高动量粒子的鉴别提出了更高的要求。比如在动量达2Gev/c时,需要对$\pi$的鉴别效率超过97%,同时$K$的误鉴别率低于2%。因此,STCF设计了两个切伦科夫探测器(RICH和DTOF)来提高粒子鉴别(PID)性能。
针对STCF中的$\pi$/$K$鉴别问题,我们在DTOF探测器上开发了一个基于卷积神经网络(CNN)的PID算法,该算法主要利用了切伦科夫光子在多阳极微通道板光电倍增管处的击中通道和到达时间。目前,CNN算法在绝大部分动量和角度范围内,对$\pi$的鉴别效率达到了99%,充分满足了STCF的物理需求。此外,基于经典CNN,我们还进行了量子卷积神经网络(QCNN)的概念验证研究,以探索其可行性和潜在的量子优势。初步结果表明QCNN在相同数据集上具有优于经典CNN的潜力。
Primary author
志鹏 姚
(Shandong University)
Co-authors
腾 李
(Shandong University)
Xingtao Huang
(Shandong University)