1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.

Production of the heavy-flavour decay lepton in high-energy nuclear collisions

14 Aug 2024, 16:40
15m
锦绣宫

锦绣宫

Oral report 重离子物理 分会场三

Speaker

Sa WANG (SCNU)

Description

In this talk, We will present a theoretical study on the production of the heavy-flavour decay lepton (HFL) in high-energy nuclear collisions at the LHC. The pp-baseline is calculated by the FONLL program, which matches the next-to-leading order pQCD calculation with the next-to-leading-log large-$p_T$ resummation. The in-medium propagation of heavy quarks is driven by the modified Langevin equations, which consider both the elastic and inelastic partonic interactions. We propose a method to separate the respective influence of the five factors, such as pp-spectra, the cold nuclear matter (CNM) effects, in-medium energy loss (E-loss), fragmentation functions (FFs), and decay channels, which may contribute to the larger $R_{AA}$ of HFL $\leftarrow b$ compared to that of HFL $\leftarrow c$ in nucleus-nucleus collisions. Based on quantitative analysis, we demonstrate that different decay channels of charm- and bottom-hadrons play an essential role at $p_T<$5 GeV, while the mass-dependent E-loss dominates the higher $p_T$ region. It is also found that the influences of the CNM effects and FFs are insignificant. At the same time, different initial pp-spectra of charm and bottom quarks have a considerable impact at $p_T>$ 3 GeV. Furthermore, we explore the path-length dependence of jet quenching by comparing the HFL $R_{AA}$ in two different collision systems. Our investigations show smaller HFL $R_{AA}$ in Pb+Pb than in Xe+Xe within the same centrality bin, consistent with the ALICE data. The longer propagation time and more effective energy loss of heavy quarks in Pb+Pb collisions play critical roles in the stronger yield suppression of the HFL compared to that in Xe+Xe. In addition, we observe a scaling behaviour of the HFL $R_{AA}$ in Xe+Xe and Pb+Pb collisions.

Primary author

Sa WANG (SCNU)

Co-authors

Ben-Wei Zhang (Central China Normal University) Enke Wang (South China Normal University)

Presentation materials