1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
19–23 Aug 2025
Asia/Shanghai timezone

The Neural Networks with Tensor Weights and the Corresponding Fermionic Quantum Field Theory

22 Aug 2025, 10:40
20m

Speaker

GUOJUN HUANG (The University of Hong Kong, Shenzhen)

Description

In this paper, we establish a theoretical connection between complex-valued neural networks (CVNNs) and fermionic quantum field theory (QFT), bridging a fundamental gap in the emerging framework of neural network quantum field theory (NN-QFT). While prior NN-QFT works have linked real-valued architectures to bosonic fields, we demonstrate that CVNNs equipped with tensor-valued weights intrinsically generate fermionic quantum fields. By promoting hidden-to-output weights to Clifford algebra-valued tensors, we induce anticommutation relations essential for fermionic statistics. Through analytical study of the generating functional, we obtain the exact quantum state in the infinite-width limit, revealing that the parameters between the input layer and the last hidden layer correspond to the eigenvalues of the quantum system, and the tensor weighting parameters in the hidden-to-output layer map to dynamical fermionic fields. The continuum limit reproduces free fermion correlators, with diagrammatic expansions confirming anticommutation. The work provides the first explicit mapping from neural architectures to fermionic QFT at the level of correlation functions and generating functional. It extends NN-QFT beyond bosonic theories and opens avenues for encoding fermionic symmetries into machine learning models, with potential applications in quantum simulation and lattice field theory.

Primary authors

GUOJUN HUANG (The University of Hong Kong, Shenzhen) Kai Zhou ( The Chinese University of Hong Kong, Shenzhen)

Presentation materials

There are no materials yet.