1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
15–19 Nov 2021
Institute of High Energy Physics (IHEP), CAS
Asia/Shanghai timezone

Nucleon-level Effective Theory of µ → e Conversion

Not scheduled
15m
Institute of High Energy Physics (IHEP), CAS

Institute of High Energy Physics (IHEP), CAS

19B Yuquan Road, Shijingshan District, Beijing, China
Parallel-Few-Body Physics

Speaker

Evan Rule (U)

Description

The Mu2E and COMET μ→e collaborations plan to advance branching ratio sensitivities by four orders of magnitude, further constraining new sources of charged lepton flavor violation (CLFV). We formulate a non-relativistic nucleon-level effective theory for this process, in order to clarify what can and cannot be learned about CLFV operator coefficients from elastic μ→e conversion. Utilizing state-of-the-art shell model wave functions, we derive bounds on operator coefficients from existing μ→e conversion and μ→eγ results, and estimate the improvement in these bounds that will be possible if Mu2E, COMET, and MEG II reach their design goals. In the conversion process, we employ a treatment of the lepton Coulomb physics that is very accurate, yet yields transparent results and preserves connections to standard-model processes like β decay and μ capture. The formulation provides a bridge between the nuclear physics needed in form factor evaluations and the particle physics needed to relate low-energy constraints from μ→e conversion to UV sources of CLFV.

Primary author

Presentation materials