1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an Indico account through https://login.ihep.ac.cn/registIndico.jsp. Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 50 Mb.

R&D of a novel high-granularity crystal calorimeter

Aug 10, 2022, 9:45 AM
Oral report 粒子物理实验技术 Parallel Session III (5):Particle Detector Technology


Mr Baohua Qi (IHEP)


In order to measure the Higgs boson, electroweak physics and the top quark with unprecedented precision, a sophisticated calorimetry system is vital for future electron-positron collider experiments. Based on the particle-flow paradigm, a novel highly granular crystal electromagnetic calorimeter (ECAL) is proposed to address major challenges from jet reconstruction and to achieve the optimal EM energy resolution of around $2-3~\%/\sqrt{E(GeV)}$. This talk reviews R&D progress on a high granularity crystal ECAL readout with silicon photomultipliers (SiPMs) as it is being developed to fully exploit the physics potential of a lepton collider. The requirements on crystal candidates, SiPMs as well as readout electronics are parameterized and quantified in Geant4 full simulation. Experiments including characterizations of crystals and SiPMs have been followed to validate and improve the simulation. Recent results from development of small-scale detector modules are being presented. Physics performance of the crystal ECAL has been studied with the particle-flow algorithm "ArborPFA" which is being optimized. A dedicated reconstruction software is also being developed for a detector layout with long crystal bars arranged to be orthogonal to each other in every two neighbouring longitudinal layers.

Primary author

Mr Baohua Qi (IHEP)


Dr Yong Liu (Institute of High Energy Physics)

Presentation materials