1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
28 May 2023 to 2 June 2023
Tianfu Cosmic Ray Research Centre
Asia/Shanghai timezone

Prospect of detecting X-ray haloes around middle-aged pulsars with eROSITA

Not scheduled
35m
Tianfu Cosmic Ray Research Centre

Tianfu Cosmic Ray Research Centre

No. 1500 Kezhi Road, Tianfu New Area, Chengdu, Chin
poster

Speaker

Mr Ben Li (Nanjing University)

Description

The detection of extended TeV gamma-ray emission (dubbed ‘TeV haloes’) around Geminga and Monogem pulsars by High Altitude Water Cherenkov collaboration implies that the halo-like morphologies around middle-aged pulsars may be common. The gamma-ray emission above 10 TeV is thought to arise from inverse Compton scattering of relativistic electrons/positrons in the pulsar haloes off cosmic microwave background photons. In the meanwhile, these electrons and positrons can produce X-ray synchrotron emission in the interstellar magnetic field, resulting in a diffuse emission in the X-ray band (namely X-ray haloes). Here, we study the prospect of detecting X-ray haloes with extended Roentgen Survey with an Imaging Telescope Array (eROSITA) from 10 middle-aged pulsars with characteristic age $\tau_{\rm c}$ larger than tens of thousands of years in the Australia Telescope National Facility pulsar catalogue. Assuming a benchmark value (i.e. B = 3 $\mu$G) for the magnetic field, most of the X-ray haloes are found to be bright enough to be detected by eROSITA in the energy range of 0.5–2 keV with a 20 ks targeted survey. Among these pulsar haloes, four are detectable in the ongoing 4-yr eROSITA all-sky survey. Thanks to the large grasp in the soft X-ray band, eROSITA is expected to be able to measure the surface brightness profiles of the X-ray haloes from sub-pc up to tens of pc scales, which can be used to constrain the magnetic field and the diffusion coefficient in the pulsar haloes.

Primary author

Mr Ben Li (Nanjing University)

Co-authors

Ms Yi Zhang (Max Planck Institute for extraterrestrial Physics) Mr Teng Liu (Max Planck Institute for extraterrestrial Physics) Dr Ruo-Yu Liu (Nanjing University) Prof. Xiang-Yu Wang (Nanjing University)

Presentation materials

There are no materials yet.