1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
22–26 Sep 2025
Asia/Shanghai timezone

Hydrodynamic effects on spin polarization in AA and pA collisions

23 Sep 2025, 14:50
20m
Oral Spin in heavy ion collisions Spin in heavy ion collisions

Speaker

Cong Yi (USTC)

Description

We have implemented the 3+1 dimensional CLVisc hydrodynamics model with \trento-3D initial conditions to investigate the spin polarization of $\Lambda$ hyperons along the beam direction in p+Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV. Following our previous theoretical framework based on quantum kinetic theory, we consider three different scenarios: $\Lambda$ equilibrium, $s$ quark equilibrium, and iso-thermal equilibrium scenarios. We have computed the second Fourier sine coefficients of spin polarization along the beam direction, denoted as $\left\langle P_{z} \sin 2(\phi_{p} - \Psi_{2}) \right\rangle$, with $\phi_{p} - \Psi_{2}$ being the azimuthal angle relative to the second-order event plane $\Psi_{2}$, as functions of multiplicity, transverse momentum and pseudo-rapidity in the three scenarios. Additionally, we have also computed the spin polarization along the beam direction, $P_{z}$, as a function of the azimuthal angle. We find that the spin polarization induced by thermal vorticity always provides an opposite contribution compared to the shear-induced polarization in p+Pb collisions. The total spin polarization computed by the current hydrodynamic model disagrees with the data measured by LHC-CMS experiments.

Primary authors

Cong Yi (USTC) Xiang-Yu Wu (Central China Normal University) Shi Pu (University of Science and Technology of China) Guang-You Qin (Central China Normal University)

Presentation materials

There are no materials yet.