1. If you are a new user, please register to get an Indico account through https://login.ihep.ac.cn/registIndico.jsp. Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
2. The name of any uploaded file should be in English or plus numbers, not containing any Chinese or special characters.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
5-9 May 2017
湖北宜昌
Asia/Shanghai timezone
Home > Timetable > Contribution details

Contribution

Quantifying pre-thermal chiral magnetic effect with chiral kinetic theory

Speakers

Primary authors

Co-authors

Summary

Chiral anomaly is a fundamental aspect of the quantum theory for chiral fermions. In a many-body system containing chiral fermions, such as the hot quark-gluon plasma created in heavy ion collisions at RHIC and the LHC, the chiral anomaly leads to macroscopic anomalous transport effects. A notable example is the chiral magnetic effect (CME), in which a vector current is generated along an external magnetic field given a nonzero imbalance between right-handed and left-handed fermions in the system. An observation of the CME is of great interest and significant efforts have been made. Current experimental data show encouraging evidences, but suffer from backgrounds. Realistic and quantitative modeling of CME signal is thus critically needed. The magnetic field in heavy ion collisions, however, is likely very short-lived, with its life time shorter than the onset time of hydrodynamics. It is thus a most pressing issue to simulate the CME in the pre-thermal stage in heavy ion collisions. The theoretical tool to do this, is the so-called chiral kinetic theory. We report the first attempt to utilize this tool for quantifying the pre-thermal CME. Exact solutions for collision-less case as well as the relaxation-time-approximation are obtained and used to compute two different CME-induced consequences: a pre-thermal charge separation across reaction plane, as well as a nonzero anomalous current along B field direction. We discuss the integration of these CME-induced initial conditions with subsequent hydrodynamic evolutions, and the implication of such results for the description of experimental data.