1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
May 21 – 26, 2017
Beijing International Convention Center
Asia/Shanghai timezone

TRACKING AND VERTEXING WITH THE ATLAS INNER DETECTOR IN THE LHC RUN2 AND BEYOND

May 22, 2017, 4:54 PM
18m
Room 307 (Beijing International Convention Center)

Room 307

Beijing International Convention Center

No.8 Beichen Dong Road, Chaoyang District, Beijing P. R. China 100101
oral Semiconductor detectors R4-Semiconductor detectors(1)

Speaker

Kyungeon CHOI, (ATLAS)

Description

Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments, boosted, and highly-collimated physics objects. To achieve this goal, ATLAS is equipped with the Inner Detector tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field.  In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which was inserted at the centre of ATLAS during the first long shutdown of the LHC. An overview of the use of each of these subdetectors in track and vertex reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking and vertexing will be summarised. These include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, novel techniques to enhance the performance in dense jet cores, time-dependent alignment of sub-detectors and special reconstruction of charged particle produced at large distance from interaction points. Moreover, data-driven methods to evaluate vertex resolution, fake rates, track reconstruction inefficiencies in dense environments, and track parameter resolution and biases will be shown. Luminosity increases in 2017 and beyond will also provide challenges for the detector systems and offline reconstruction, and strategies for mitigating the effects of increasing occupancy will be discussed.

Primary author

Presentation materials