1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
May 21 – 26, 2017
Beijing International Convention Center
Asia/Shanghai timezone

The Barrel DIRC Detector for the PANDA Experiment at FAIR

May 23, 2017, 11:54 AM
Room 305C (Beijing International Convention Center)

Room 305C

Beijing International Convention Center

No.8 Beichen Dong Road, Chaoyang District, Beijing P. R. China 100101
oral Experimental detector systems R2-Experimental detector systems(2)


Roman Dzhygadlo (GSI Helmholtzzentrum für Schwerionenforschung GmbH)


The PANDA experiment at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) near GSI, Darmstadt, Germany will address fundamental questions of hadron physics. Excellent Particle Identification (PID) over a large range of solid angles and particle momenta will be essential to meet the objectives of the rich physics program. Charged PID for the barrel region of the PANDA target spectrometer will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) detector. The PANDA Barrel DIRC will cover the polar angle range of 22-140 degrees and separate charged pions from kaons for momenta between 0.5 GeV/c and 3.5 GeV/c with a separation power of at least 3 standard deviations. The design is based on the successful BABAR DIRC and the SuperB FDIRC R&D with several important improvements to optimize the performance for PANDA, such as a focusing lens system, fast timing, a compact fused silica prism as expansion region, and lifetime-enhanced Microchannel-Plate PMTs for photon detection. We will discuss the baseline design of the PANDA Barrel DIRC, based on narrow bars made of synthetic fused silica and a complex multi-layer spherical lens system, and the potentially cost-saving design option using wide fused silica plates, and present the result of tests of a large system prototype with a mixed hadron beam at CERN.

Primary author

Roman Dzhygadlo (GSI Helmholtzzentrum für Schwerionenforschung GmbH)

Presentation materials