1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
21–26 May 2017
Beijing International Convention Center
Asia/Shanghai timezone

Slow liquid scintillator for scintillation and Cherenkov light separation

23 May 2017, 09:00
18m
Room 305C (Beijing International Convention Center)

Room 305C

Beijing International Convention Center

No.8 Beichen Dong Road, Chaoyang District, Beijing P. R. China 100101
oral Neutrino Detectors R2-Neutrino Detectors(2)

Speaker

Mr Ziyi Guo (Tsinghua University)

Description

Slow liquid scintillator (water-based or oil-based) is proposed as the detection material of a few future neutrino experiments. It can be used to distinguish between scintillation and Cherenkov light. Thus neutrino detectors with it will have the directionality and particle identification for charged particles, so that a better sensitivity is expected for low energy (MeV-scale) neutrino physics, solar physics, geo-science and supernova relic neutrino search. Linear alkylbenzene (LAB) is the primary component or ingredient of these liquid scintillators. We studied all the relevant physical aspects of different combinations of LAB, 2,5-diphenyloxazole (PPO) and p-bis-(o-methylstyryl)-benzene (bis-MSB), including the light yield, time profile, emission spectrum, attenuation length of scintillation emission and visiable light yield of Cherenkov emission. We also measured the attenuation spectrum of some relevant neutrino detector material, like acrylic. Some formulations allow a good separation between Cherenkov and scintillation light, and a reasonable high light yield can also be achieved. The expected improvement on physics with such type of liquid scintillator will also be discussed.

Primary author

Mr Ziyi Guo (Tsinghua University)

Co-author

Dr Zhe Wang (Tsinghua University)

Presentation materials