Speaker
Magdalena Munker
(CERN, Geneva, Switzerland)
Description
The tracking detector at the proposed high-energy CLIC electron-positron collider will be based on small-pitch silicon pixel- or strip sensors arranged in a multi-layer barrel and end-cap geometry with a total surface of about 90 sqm. The requirements include single-point position resolutions of a few microns and time stamping with an accuracy of approximately 10 ns, combined with a low material budget of less than 2% of a radiation length per layer, including cables, cooling and supports. Mainly fully integrated CMOS sensors are under consideration. One of the candidate technologies is based on a 180 nm CMOS process with a high-resistivity substrate. Test beam measurements and TCAD simulations were performed for demonstrator chips consisting of an array of analog pixel matrices with different pixel pitch and a variety of collection-electrode geometries and process options. The analog signals of each matrix are read out by external sampling ADCs, allowing for a precise characterisation of the signal response. In this contribution we present the sensor design and show results from recent test-beam campaigns, as well as comparisons with TCAD simulations. The results show good spatial and timing resolution in line with the requirements for the CLIC tracker.
Primary author
Magdalena Munker
(CERN, Geneva, Switzerland)