1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.

Nuclear liquid-gas phase transition with machine learning

Not scheduled
15m
Hualongcheng Hotel

Hualongcheng Hotel

469 Shizhou Road Enshi, Hubei,China

Speaker

Rui Wang (S)

Summary

The nuclear liquid-gas phase transition is an old and long-last topic. Since the interaction between nucleons exhibit Van der Waals features similar with that between molecules, thus the nuclei, considered as self-bound Fermi liquid can experience liquid-gas phase transition as well. The machine-learning techniques have already shown their capability for studying phase transitions in condensed matter physics. In this talk, I am going to introduce our recent work of using machine-learning techniques to study the nuclear liquid-gas phase transition. We demonstrate the success of these techniques, both supervised and unsupervised, in classifying the liquid and gas phase of nuclei, and determining the limiting temperature of the nuclear liquid-gas phase transition, directly from the raw experimental data of heavy-ion reactions.

Primary authors

Rui Wang (S) Yu-Gang Ma (Shanghai Institute of Applied Physics, CAS)

Presentation materials

There are no materials yet.