1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.

Chiral kinetic theory with Landau level basis

Not scheduled
15m
Hualongcheng Hotel

Hualongcheng Hotel

469 Shizhou Road Enshi, Hubei,China

Speaker

Shu Lin (Sun Yat-Sen University)

Summary

The chiral magnetic effect and chiral vortical effect enable us to probe possible local parity violation in hot dense matter created in heavy ion collisions. While equilibrium description is simple, the situation in heavy ion collisions can be quite far from equilbirum: the axial charge is likely to peak at early stage of the collisions [1-3], and the magnetic field and vorticity are also dominant at early stage. These require theoretical frameworks for out-of-equilibirum dynamics for chiral fermions. Chiral kinetic theory (CKT) offers such a framework. It has been derived based on field theory [4,5]. Previous works on CKT are organized as an expansion in hbar. which is valid for weak magnetic field. Its simplicity is lost at second order [6]. We will present a CKT using Landau level as basis, which is valid for arbitrary magnetic field. In particular in strong magnetic field limit, it reduces to CKT in the lowest Landau level approximation [7].

[1]Yuji Hirono, Tetsufumi Hirano, and Dmitri E. Kharzeev, 1412.0311
[2]Yin Jiang, Shuzhe Shi, Yi Yin, and Jinfeng Liao, Chin. Phys., C42(1):011001, 2018
[3]Shu Lin, Li Yan, Gui-Rong Liang, Phys. Rev. C 98, 014903 (2018)
[4]Dam Thanh Son, Naoki Yamamoto, Phys.Rev.Lett.109:181602,2012
[5]M. A. Stephanov, Y. Yin, Phys. Rev. Lett. 109, 162001, 2012
[6]Jian-Hua Gao, Zuo-Tang Liang, Qun Wang, Xin-Nian Wang, Phys. Rev. D 98, 036019 (2018)
[7]Koichi Hattori, Shiyong Li, Daisuke Satow, Ho-Ung Yee, Phys. Rev. D 95, 076008 (2017)

Primary author

Shu Lin (Sun Yat-Sen University)

Co-author

Lixin Yang (Sun Yat-Sen University)

Presentation materials

There are no materials yet.